Skip to main content
Log in

Expression of fungal genes involved in penicllin biosynthesis

  • Special Topic Review: Control of Gene Expression Microorganisms. Edited by Miguel Vicente
  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Carbon catabolite repression and pH regulation are regulatory circuits with a wide domain of action in the Plectomycetes. Penicillin biosynthesis is one of the pathways which are under their control. The conclusions obtained so far, which are based on studies of the genetic and molecular regulation of the penicillin pathway of Aspergillus nidulans, would have been much harder to produce using an organism such as Penicillium chrysogenum (the industrial penicillin producer). However, A. nidulans and P. chrysogenum are close in terms of their phylogeny and one can reasonably predict that the conclusions about A. nidulans, which are summarized in this review and which are of unquestionable biotechnological relevance, will be extrapolable to the industrial organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T.H., Boylan, M.T. & Timberlake, W.E. 1988 brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54, 353–362.

    Google Scholar 

  • Alonso, M.J., Bermejo, F., Reglero, A., Fernández-Cañón, J.M., González, G. & Luengo, J.M. 1988 Enzymatic synthesis of penicillins. Journal of Antibiotics 41, 1074–1084.

    Google Scholar 

  • Alvarez, E., Cantoral, J.M., Barredo, J.L., Díez, B. & Martín, J.F. 1987 Purification to homogeneity and characterization of acyl coenzyme A:6-aminopenicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrobial Agents and Chemotherapy 31, 1675–1682.

    Google Scholar 

  • Arst, H.N.Jr & Bailey, C.R. 1977 The regulation of carbon metabolism in Aspergillus nidulans. In Genetics and Physiology of Aspergillus, eds Smith, J. & Pateman, J. pp. 131–146. London: Academic Press.

    Google Scholar 

  • Arst, H.N.Jr & Cove, D.J. 1973 Nitrogen metabolism repression in Aspergillus nidulans. Molecular and General Genetics 126, 111–141.

    Google Scholar 

  • Arst, H.N.Jr & Scazzocchio, C. 1985 Formal genetics and molecular biology of the control of gene expression in Aspergillus nidulans. In Gene Manipulations in Fungi, eds Bennett, J.W. & Lasure, L.L. pp. 309–343. New York: Academic Press.

    Google Scholar 

  • Arst, H.N.Jr, Tollervey, D., Dowzer, C.E.A. & Kelly, J.M. 1990 An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite derepression. Molecular Microbiology 4, 851–854.

    Google Scholar 

  • Bailey, C.R. & Arst, H.N.Jr 1975 Carbon catabolite repression in Aspergillus nidulans. European Journal of Biochemistry 51, 573–577.

    Google Scholar 

  • Caddick, M.X., Brownlee, A.G. & Arst, H.N. 1986 Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular and General Genetics 203, 346–353.

    Google Scholar 

  • Carr, L., Skatrud, P., Scheetz, M., Queener, S. & Ingolia, T. 1986 Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48, 257–266.

    Google Scholar 

  • Chain, E., Florey, H.W., Gardner, A.D., Heatley, N.G., Jennings, M.A., Orr-Ewing, J. & Sanders, A.G. 1940 Penicillin as a chemotherapeutic agent. Lancet 1, 226–228.

    Google Scholar 

  • Clutterbuck, A.J. 1974 Aspergillus nidulans. In Handbook of Genetics, Vol. 1, ed King, R.C. pp. 447–510. New York: Plenum Press.

    Google Scholar 

  • Cole, D.S., Holt, G. & Macdonald, K.D. 1976 Relationship of the genetic determination of impaired penicillin production in naturally occurring strains to that in induced mutants in Aspergillus nidulans. Journal of General Microbiology 96, 423–426.

    Google Scholar 

  • Díez, B., Barredo, J.L., Alvarez, E., Cantoral, J.M., VanSolingen, P., Groenen, M.A.M., Veenstra, A.E. & Martín, J.F. 1989 Two genes involved in penicillin biosynthesis are linked in a 5.1 kb SalI fragment in the genome of Penicillium chrysogenum. Molecular and General Genetics 218, 572–576.

    Google Scholar 

  • Dowzer, C.E.A. & Kelly, J.M. 1989 Cloning of the creA gene in Aspergillus nidulans: a gene involved in carbon catabolite repression. Current Genetics 15, 457–459.

    Google Scholar 

  • Dowzer, C.E.A. & Kelly, J.M. 1991 Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Molecular and Cellular Biology 11, 5701–5709.

    Google Scholar 

  • Edwards, G.F.L. & Holt, G. 1974 Mutants of Aspergillus nidulans impaired in penicillin biosynthesis. Journal of General Microbiology 84, 420–422.

    Google Scholar 

  • Espeso, E. & Peñalva, M.A. 1992 Carbon catabolite repression can account for the temporal pattern of expression of a penicillin structural gene in Aspergillus nidulans. Molecular Microbiology 6, 1457–1465.

    Google Scholar 

  • Fernández-Cañón, J.M., Reglero, A., Martínez-Blanco, H. & Luengo, J.M. 1989 Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54-1255: a critical regulatory point in penicillin biosynthesis. Journal of Antibiotics 9, 1398–1409.

    Google Scholar 

  • Gómez-Pardo, E. & Peñalva, M.A. 1990 The upstream region of the IPNS gene determines expression during secondary metabolism in Aspergillus nidulans. Gene 89, 109–115.

    Google Scholar 

  • Hamer, J.E. & Timberlake, W.E. 1987 Functional organization of the Aspergillus nidulans trpC promoter. Molecular and Cellular Biology 7, 2352–2359.

    Google Scholar 

  • Heinemann, J.A. & Sprague, G.F. 1989 Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205–209.

    Google Scholar 

  • Hollander, I.J., Shen, J.Q., Heim, J., Demain, A.L. & Wolfe, S. 1984 A pure enzyme catalyzing penicillin biosynthesis. Science 224, 610–612.

    Google Scholar 

  • Hynes, M.J. & Kelly, J.M. 1977 Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Molecular and General Genetics 150, 193–204.

    Google Scholar 

  • Johnstone, I.L., Hughes, S.G. & Clutterbuck, A.J. 1985 Cloning an A. nidulans developmental gene by transformation. EMBO Journal 4, 1307–1311.

    Google Scholar 

  • Keleher, C.A., Redd, M.J., Schultz, J., Carlson, M. & Johnson, A.D. 1992 Ssn6-Tup 1 is a general repressor of transcription in yeast. Cell 68, 709–719.

    Google Scholar 

  • Kudla, B., Caddick, M.X., Langdon, T., Martinez-Rossi, N.M., Bennet, C.F., Sibley, S., Davies, R.W. & Arst, H.N.Jr 1990 The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation after a loop residue of a putative zinc finger. EMBO Journal 9, 1355–1364.

    Google Scholar 

  • Kulmburg, P., Mathieu, M., Dowzer, C., Kelly, J. & Felenbok, B. 1993 Specific binding sites in the alcR-alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in A. nidulans. Molecular Microbiology 7, 847–857.

    Google Scholar 

  • Landan, G., Cohen, G., Aharanowitz, Y., Shuali, Y., Graur, D. & Shiffman, D. 1990 Evolution of isopenicillin N synthetase genes may have involved horizontal gene transfer. Molecular Biology and Evolution 7, 399–406.

    Google Scholar 

  • Leskiw, B.K., Aharanowitz, Y., Mevarech, M., Wolfe, S., Vining, L.C., Westlake, D.W.S. & Jensen, S.E. 1988 Cloning and nucleotide sequence determination of the isopenicillin N synthetase gene from Streptomyces clavuligerus. Gene 62, 187–196.

    Google Scholar 

  • Lockington, R.A., Sealy-Lewis, H.M., Scazzocchio, C. & Davies, R.W. 1985 Cloning and characterisation of the ethanol utilisation regulon in Aspergillus nidulans. Gene 33, 137–149.

    Google Scholar 

  • Luengo, J.M. & Peñalva, M.A. 1993 Penicillin biosynthesis. In The Genetics and Physiology of Aspergillus nidulans, eds Martinelli, S. & Kinghorn, J.R. London: Chapman and Hall, in press.

    Google Scholar 

  • MacCabe, A., Riach, M., Unkles, S. & Kinghorn, J. 1990 The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO Journal 9, 279–287.

    Google Scholar 

  • MacCabe, A.P., vanLiempt, H., Palissa, H., Unkles, S.E., Riach, M.B.R., Pfeifer, E., VanDöhren, H. & Kinghorn, J.R. (1991) δ-(l-αAminoadipyl)-l-cysteinyl-d-valine synthetase from Aspergillus nidulans. Journal of Biological Chemistry 266, 12646–12654.

    Google Scholar 

  • Martínez-Blanco, H., Reglero, A., Fernández-Valverde, M., Ferrero, M.A., Moreno, M.A., Peñalva, M.A. & Luengo, J.M. 1992 Isolation and characterization of the acetyl-CoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. Journal of Biological Chemistry 267, 5474–5481.

    Google Scholar 

  • Mirabito, P.M., Adams, T.H. & Timberlake, W.E. 1989 Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859–868.

    Google Scholar 

  • Montenegro, E., Barredo, J.L., Gutiérrez, S., Díez, B., Alvarez, E. & Martín, J.F. 1990 Cloning, characterization of the acyl-CoA:6-aminopenicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthetase gene. Molecular and General Genetics 221, 322–330.

    Google Scholar 

  • Nehlin, J.O., Carlberg, M. & Ronne, H. 1991 Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO Journal 10, 3373–3377.

    Google Scholar 

  • Nehlin, J.O. & Ronne, H. 1990 Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO Journal 9, 2891–2898.

    Google Scholar 

  • Osmani, S.A., Engle, D.B., Doonan, J.H. & Morris, N.R. 1988 Spindle formation and chromatin condensation in cells blocked at interface by mutation in a negative cell cycle control gene. Cell 52, 241–251.

    Google Scholar 

  • Peñalva, M.A., Moya, A., Dopazo, J. & Ramón, D. 1990 Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. Proceedings of the Royal Society, Series B 241, 164–169.

    Google Scholar 

  • Peñalva, M.A., Vian, A., Patiño, C., Pérez-Aranda, A. & Ramón, D. 1989 Molecular biology of penicillin production in Aspergillus nidulans. In Genetics and Molecular Biology of Industrial Microorganisms, eds Hershberger, C.L., Queener, S.W. & Hegeman, pp. 256–261. Washington DC: American Society for Microbiology.

    Google Scholar 

  • Pontecorvo, G., Roper, J.A., Hemmons, L.A., Macdonald, K.D. & Bufton, A.W.J. 1953 The genetics of Aspergillus nidulans. Advances in Genetics 5, 141–238.

    Google Scholar 

  • Ramón, D., Carramolino, L., Patiño, C., Sánchez, F. & Peñalva, M.A. 1987 Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the β-lactam ring in Aspergillus nidulans. Gene 57, 171–181.

    Google Scholar 

  • Samsom, S.M., Belagaje, R., Blankenship, D.T., Chapman, J.L., Perry, D., Skatrud, P.L., VanFrank, R.M., Abraham, E.P., Baldwin, J.E., Queener, S.W. & Ingolia, T.D. 1985 Isolation, sequence determination and expression in E. coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318, 191–194.

    Google Scholar 

  • Shah, A.J., Tilburn, J., Adlard, M.W. & Arst, H.N.Jr 1991 pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiology Letters 77, 209–212.

    Google Scholar 

  • Smith, D., Burnham, M., Bull, J., Hodgson, J., Ward, J., Browne, P., Brown, J., Barton, B., Earl, A. & Turner, G. 1990a β-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO Journal 9, 741–747.

    Google Scholar 

  • Smith, D., Earl, A. & Turner, G. 1990b The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO Journal 9, 2743–2750.

    Google Scholar 

  • Sophianopoulou, V., Suárez, T., Diallinas, G. & Scazzochio, C. 1992 Operator derepressed mutations in the proline utilisation gene cluster of A. nidulans. Molecular and General Genetics 236, 209–213.

    Google Scholar 

  • Sprague, G.F.Jr 1991 Genetic exchange between kingdoms. Current Opinions in Genetics and Development 1, 530–533.

    Google Scholar 

  • Timberlake, W. & Marshall, M. 1989 Genetic engineering of filamentous fungi. Science 244, 1313–1317.

    Google Scholar 

  • VanLiempt, H., VonDöhren, H. & Kleinkauf, H. 1989 δ-(l-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase from Aspergillus nidulans, Journal of Biological Chemistry 264, 3680–3684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peñalva, M.A., Espeso, E., Pérez-Esteban, B. et al. Expression of fungal genes involved in penicllin biosynthesis. World Journal of Microbiology and Biotechnology 9, 461–467 (1993). https://doi.org/10.1007/BF00328034

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328034

Key words

Navigation