Skip to main content
Log in

Quenching of a proton gradient and concomitant increase of intragranular calcium in interstitial cells of Mytilus retractor muscle

Fluorescence microscopy and X-ray microanalysis

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The content of specific glio-interstitial granules in situ was studied in Mytilus retractor muscle using fluorescent probes and X-ray microanalysis. The granules readily take up the fluorescent monoamine dye acridine orange added to sea water (2.7×10-6 M) and appear red in fluorescence microscopy. The addition of ammonium chloride (10 mM) or various proton ionophores results in extinction of the granule fluorescence. In addition, a step-wise decrease in granule fluorescence is observed when the tissue is perfused with artificial sea water of decreasing pH. These granules thus appear to be acidic inside. The animals were maintained in artificial sea water containing 8.36 mM Ca2+ and 528.90 mM Na+, the ratio R=[Ca2+]0/[Na+]2 0 being thus equal to 3x10-5. Perfusions of the tissue with artificial sea water containing a higher calcium concentration (12.2 mM) and/or a higher [Ca2+]0/[Na+]2 0 ratio (R=4.5×10-5) result in a drastic reduction of the proton gradient, evidenced by a quenching of the acridine orange fluorescence. Under the same conditions, a significant increase of the total intragranular calcium concentration was demonstrated by quantitative X-ray micro-analysis of the tissue processed by quick freezing and freeze-substitution in the presence of oxalic acid. The fluorescence of the probe Fluo-3/AM, indicative of ionized calcium, is higher in the granules than in the surrounding cytoplasm; this suggests that calcium is accumulated in the granule against its concentration gradient. The acidic gradient of specific glio-interstitial cell granules could provide the energy needed for this calcium accumulation through a Ca2+/H+ exchange. These results are discussed with regard to the hypothesis that the glio-interstitial tissue can regulate pericellular calcium and/or hydrogen ion ioncentration in the vicinity of nerve and muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RC, Orci L (1988) A view of acidic intracellular compartments. J Cell Biol 106:539–543

    Google Scholar 

  • Astarie C, Levenson J, Simon A, Meyer Ph, Devynck MA (1989) Platelet cytosolic proton and free calcium concentrations in essential hypertension. J Hypertens 7:485–491

    Google Scholar 

  • Blaineau S, Julliard AK, Amsellem J, Nicaise G (1987) Quantitative X-ray microanalysis of calcium with the Camebax-TEM system in frozen, freeze-substituted and resin-embedded tissue sections. Application to molluscan glio-interstitial granules. Histochemistry 87:545–555

    Google Scholar 

  • Brinley FJ (1978) Calcium buffering in squid axons. Ann Rev Biophys Bioeng 7:363–392

    Google Scholar 

  • Carty SE, Johnson RG, Scarpa A (1985) H+-translocating ATPase and other membrane enzymes involved in the accumulation and storage of biological amines in chromaffin granules. Enz Biol Membr 3:449–495

    Google Scholar 

  • Cidon S, Ben-David H, Nelson N (1983) ATP driven proton fluxes across membranes of secretory organelles. J Biol Chem 258:11684–11688

    Google Scholar 

  • Crenshaw MA (1972) The organic composition of molluscan extrapallial fluid. Biol Bull 143:506–512

    Google Scholar 

  • Dean GE, Nelson PJ, Rudnick G (1986) Characterization of native and reconstituted hydrogen ion pumping adenosinetriphosphatase of chromaffin granules. Biochemistry 25:4918–4925

    Google Scholar 

  • Dell'Antone P (1989) Calcium ionophore-induced dissipation of intracellular proton gradients in rat thymocytes. J Cell Physiol 139:76–82

    Google Scholar 

  • Driessen AJM, Konings WN (1986) Calcium transport in membrane vesicles of Streptococcus cremoris. Eur J Biochem 159:149–155

    Google Scholar 

  • Ellington WR (1983) The extent of intracellular acidification during anoxia in the catch muscles of two bivalve molluscs. J Exp Zool 227:313–317

    Google Scholar 

  • Geyer G, Halbhuber KJ, Benser A (1974) Ultrahistochemical demonstration of calcium ions by a freeze-substitution method. Acta Histochem 48:257–261

    Google Scholar 

  • Gillot I, Ciapa B, Payan P, De Renzis G, Nicaise G, Sardet C (1989) Quantitative X-ray microanalysis of calcium in sea urchin eggs after quick freezing and freeze-substitution: Validity of the method. Histochemistry 92:523–529

    Google Scholar 

  • Grinstein S, Furuya W, Van der Meulen J, Hancock RGV (1983) The total and free concentrations of Ca2+ and Mg2+ inside platelet secretory granules. J Biol Chem 258:14774–14777

    Google Scholar 

  • Hemming FJ, Nicaise G (1982) Environment-dependent development of glial tissue. Brain Res 245:127–130

    Google Scholar 

  • Hemming FJ, Aramant R, Nicaise G (1983) Simultaneous ultrastructural localisation of serotonin and cholinesterases in Mytilus byssal retractor muscle (A.B.R.M.). Histochemistry 77:495–510

    Google Scholar 

  • Horackova M, Vassort G (1979) Sodium calcium exchange in regulation of cardiac contractility. Evidence for an electrogenic, voltage-dependent mechanisms. J Gen Physiol 73:403–424

    Google Scholar 

  • Israel M, Manaranche R (1985) Cholinergic transmission, is it the result of release of cytosolic acetylcholine? In: Rothman SS, Ho JJL (eds) Nonvesicular transport. Wiley, New York, pp 229–250

    Google Scholar 

  • Johnson RG, Carty SE, Fingerhood BJ, Scarpa A (1980) The internal pH of mast cell granules. FEBS Lett 120:75–79

    Google Scholar 

  • Julliard AK, Nicaise G (1984) The development of glio-interstitial tissue in Mytilus retractor muscle depends on Na+-Ca2+ antagonism. Neuroscience 13:1387–1396

    Google Scholar 

  • Kao JPY, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by Fluo-3*. J Biol Chem 264:8179–8184

    Google Scholar 

  • Lee HC, Forte JG, Epel D (1982) The use of fluorescent amines for the measurement of pHi: applications in liposomes, gastric microsomes, and sea urchin gametes. In: Nuccitelli R, Deamer DW (eds) Intracellular pH: its measurement, regulation, and utilization in cellular functions. Liss, New York, pp 135–160

    Google Scholar 

  • Leenders HJ (1967) Ca coupling in the anterior byssal retractor muscle of Mytilus edulis. J Physiol 192:681–693

    Google Scholar 

  • Madeira VMC (1980) Proton movements across the membranes of sarcoplasmic reticulum during the uptake of calcium ions. Arch Biochem Biophys 200:319–325

    Google Scholar 

  • Maggio K, Keicher E, Gillot I, Bilbaut A, Hernandez-Nicaise ML, Nicaise G (1989) Mise en évidence d'une accumulation de protons dans les cellules gliales d'Aplysia et les cellules glio-interstitielles de Mytilus. 3e Coll Natl Neurosci, Montpellier, p 260

  • Maxfield FR (1985) Calcium and pH in cytoplasmic organelles. Trends Biochem Sci 10:443–447

    Google Scholar 

  • Meech RW, Thomas RC (1977) The effect of calcium injection on the intracellular sodium and pH of snail neurones. J Physiol 265:867–879

    Google Scholar 

  • Meech RW, Thomas RC (1987) Voltage-dependent intracellular pH in Helix aspersa neurones. J Physiol 390:433–452

    Google Scholar 

  • Minta A, Kao JPY, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    Google Scholar 

  • Mullins LJ (1984) An electrogenic saga: consequences of sodiumcalcium exchange in cardiac muscle. In: Blaustein MP, Lieberman M (eds) Electrogenic transport: fundamental principles and physiological implications. Raven Press, New York, pp 161–179

    Google Scholar 

  • Muneoka Y, Twarog BM (1983) Neuromuscular transmission and excitation coupling in molluscan muscle. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca 4. Academic Press, New York, pp 35–76

    Google Scholar 

  • Nicaise G (1973) The gliointerstitial system of molluscs. Int Rev Cytol 34:251–332

    Google Scholar 

  • Nicaise G, Amsellem J (1983) Cytology of muscle and neuromuscular junction. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca 4. Academic Press, New York, pp 1–33

    Google Scholar 

  • Nicaise G, Amsellem J, Blaineau S, Hemming FJ (1984) Quantitative microanalysis of calcium subcellular compartments in resinembedded tissue sections (X-ray wavelength dispersive spectrometry). J Physique 45:C2 461-C2 462

    Google Scholar 

  • Nicaise G, Gillot I, Julliard AK, Keicher E, Blaineau S, Amsellem J, Meyran JC, Hernandez-Nicaise ML, Ciapa B, Gleyzal C (1989) X-ray microanalysis of calcium containing organelles in resin embedded tissue. Scanning Microsc 3:199–220

    Google Scholar 

  • Niggli V, Sigel E, Carafoli E (1982) The purified Ca2+ pump of human erythrocyte membrane catalyzes an electroneutral Ca2+-H+ exchange in reconstituted liposomal systems. J Biol Chem 257:2350–2356

    Google Scholar 

  • Njus D, Sehr PA, Radda GK, Ritchie GA, Seeley PJ (1978) Phorphorus-31 nuclear magnetic resonance studies of active proton translocation in chromaffin granules. Biochemistry 17:4337–4343

    Google Scholar 

  • Ohkuma S, Moriyama Y, Takano T (1982) Identification and characterisation of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc Natl Acad Sci USA 79:2758–2762

    Google Scholar 

  • Ornberg RL, Reese TS (1980) A freeze-substitution method for localizing divalent cations: examples from secretory systems. Fed Proc 39:2802–2808

    Google Scholar 

  • Packman U, Ryler R (1972) Quantum yield of acridine interactions with DNA of definite base sequence. A basis for explanation of acridine bands in chromosomes. Exp Cell Res 72:602–608

    Google Scholar 

  • Paparo A (1980) The regulation of intracellular calcium and release of neurotransmitters in the mussel, Mytilus edulis. Comp Biochem Physiol 66A:517–520

    Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    Google Scholar 

  • Saavedra-Molina A, Uribe S, Devlin TM (1990) Control of mitochondrial matrix calcium: using Fluo-3 as a fluorescent calcium indicator. Biochim Biophys Acta 167:148–153

    Google Scholar 

  • Scherrer B (1984) Biostatistique, Gaëtan Morin, Chincoutimi (Quebec)

  • Sanchez-Armass S, Blaustein MP (1987) Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals. Am J Physiol 252:C595-C603

    Google Scholar 

  • Smallwood JI, Waisman DM, Lafreniere D, Rasmussen H (1983) Evidence that the erythrocyte calcium pump catalyzes Ca2+: nH+ exchange. J Biol Chem 258:11092–11097

    Google Scholar 

  • Smith T (1990) Regulation of intrasynaptosomal free calcium concentrations: studies with the fluorescent indicator, Fluo-3. Neurochem Int 16:89–94

    Google Scholar 

  • Somlyo AV, Broderick H, Shuman H, Buhle EL Jr, Somlyo AP (1988) Atrial specific granules in situ have high calcium content, are acidic and maintain anion gradients. Proc Natl Acad Sci USA 85:6222–6226

    Google Scholar 

  • Stone DK, Xie XS, Racker E (1983) An ATP-driven proton pump in clatrin-coated vesicules. J Biol Chem 258:4059–4062

    Google Scholar 

  • Treherne JE, Carlson AD, Gupta BL (1969) Extraneuronal sodium store in central nervous system of Anodonta cygnea. Nature 223:377–379

    Google Scholar 

  • Tsien RY (1988) Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neurosci 11:419–424

    Google Scholar 

  • Vercesi A, Reynafarje B, Lehninger AL (1978) Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J Biol Chem 253:6379–6385

    Google Scholar 

  • Webb DJ, Nuccitelli R (1981) Direct measurement of intracellular pH changes in Xenopus eggs at fertilization and cleavage. J Cell Biol 91:562–567

    Google Scholar 

  • Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by digital imaging microscope using Fura-2. Nature 318:558–561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maggio, K., Keicher, E., Hernandez-Nicaise, M.L. et al. Quenching of a proton gradient and concomitant increase of intragranular calcium in interstitial cells of Mytilus retractor muscle. Cell Tissue Res 262, 149–156 (1990). https://doi.org/10.1007/BF00327756

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327756

Key words

Navigation