Skip to main content
Log in

Picosecond fluorescence studies by intracavity gain spectroscopy in a modelocked dye laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This article presents measurements which combine modelocking technique with intracavity spectroscopy. To test this approach, a sample (10−5 m ethanolic solution of 1,4-dihydroxyanthranquinone) was inserted in a modelocked Ar+ ion laser and probed by intracavity pulses of a synchronously pumped dye laser. The probing of the sample results in an amplification of the dye laser output. Maximum output was measured if the pulses of the dye laser temporally overlapped with those of the Ar+ ion laser inside the sample. Under this condition, the spectral laser intensity was shaped by the spectrum of stimulated fluorescence which originated from a molecular vibronic state populated by pump laser excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Shapiro (ed.): Ultrashort Light Pulses, Topics in Applied Physics, Vol. 18 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  2. G.R. Fleming: Chemical Applications of Ultrafast Spectroscopy, International Series of Monographs on Chemistry, Vol. 13 (Oxford, New York 1986)

    Google Scholar 

  3. T.D. Harris: Laser Intracavity-Enhanced Spectroscopy, in: Ultrasensitive Lasre Spectroscopy, ed. by D. Kliger (Academic, New York 1983)

    Google Scholar 

  4. H. Atamspacher, H. Scheingraber, R.C. Vidal: Phys. Rev. A 32, 254 (1985)

    Google Scholar 

  5. R.A. Keller, K.A. Truesdell: J. Chem. Phys. 75, 4271 (1981)

    Google Scholar 

  6. W. Brunner, H. Paul: Opt. Commun. 12, 252 (1974)

    Google Scholar 

  7. M. Maeda, F. Ishitsuka, Y. Miyazoe, M. Matsumoto: Appl. Opt. 16, 403 (1977)

    Google Scholar 

  8. E. Kleist, H. Bettermann: Opt. Letters 13, 449 (1988)

    Google Scholar 

  9. K.A. Truesdell, R.A. Keller: Appl. Opt. 22, 339 (1983)

    Google Scholar 

  10. W.A. Renners: The Chemistry of Antitumor Antibiotics, Vol. 1 (Wiley, New York 1979)

    Google Scholar 

  11. H. Bettermann: Submitted to J. Chem. Phys.

  12. G. Chini, K. Kelbert, H. Bettermann: Rev. Sci. Instrum. 62, 1234 (1991)

    Google Scholar 

  13. Z. Yoshida, F. Takabayashi: Tetrahydron 24, 933 (1968)

    Google Scholar 

  14. H. Inoue, T. Hoshi, T. Yoshino, Y. Tanizaki: Bull. Chem. Soc. Japan 45, 1018 (1972)

    Google Scholar 

  15. G. Smulevich, L. Angeloni, S. Giovannardi, M.P. Marzocchi: Chem. Phys. 65, 313 (1982)

    Google Scholar 

  16. T.P. Carter, G.D. Gillespie, M.A. Connolly: J. Phys. Chem. 82, 192 (1982)

    Google Scholar 

  17. G. Smulevich, A. Amirav, U. Even, J. Jortner: Chem. Phys. 73, 1 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettermann, H., Chini, G. Picosecond fluorescence studies by intracavity gain spectroscopy in a modelocked dye laser. Appl. Phys. B 54, 216–220 (1992). https://doi.org/10.1007/BF00325505

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325505

PACS

Navigation