Skip to main content
Log in

Quality control of rare earth compounds by multielement analysis without chemical separation

  • Original Papers
  • General Chemistry
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

The determination of impurities in the concentration range down to about 0.1 mg/kg in rare earth compounds without chemical separation or preconcentration has been investigated by application of various multielement methods suitable for routine analysis. Mass spectrometry with a plasma ion source (ICP-MS) is most favourable for the determination of foreign rare earth elements (REE) and provides very low detection limits. It is also suitable for measuring a great number of non-REE. Atomic emission spectrometry in inductively coupled plasma (ICP-AES) is also applicable for many non-REE in the range of low concentrations, in particular for elements of low volatility. Flame atomic absorption spectrometry (FAAS) is preferable for alkali and alkaline earth elements, and voltammetry is well suited for the determination of low concentrations of Cu, Zn and Cd. X-ray fluorescence analysis (XRF) is applicable only in the range of concentrations higher than 1 to 10 mg/kg; it is well suited to give a survey of the presence of foreign elements in concentrations >10 mg/kg. Analytical data for 15 commercial REE compounds are presented and detection limits, selection of suitable analytical lines, advantages and disadvantages of the methods are discussed. The analytical data are compared with the specifications given by the suppliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gmelins Handbuch der Anorganischen Chemie. (1988) Springer, Berlin Heidelberg New York

  2. Ullmanns Enzyklopädie der Technischen Chemie, 4 Aufl, Bd 2/5 Aufl, Bd 3 II. (1972/1985) VCH, Weinheim

  3. Comstock MJ (1981) Industrial applications of rare earth elements. ACS Symposium Series 164. ACS, Reno Nevada

    Google Scholar 

  4. Reinststoffe in Wissenschaft und Technik. 3, 4 und 5 Internationales Symposium, Akademie der Wissenschaften der DDR. Dietz, Berlin 1975, 1977, 1980

  5. Gschneidner KA, Eyring JL (eds) Handbook on the physics and chemistry of rare earths, Vol 1 (1978); Vols 2–4 (1979); Vol 5 (1982); Vols 6, 7 (1984); Vol 8 (1986); North Holland, Amsterdam

    Google Scholar 

  6. Lieser KH, Burkhardt S-R, Fey W (1990) Fresenius J Anal Chem 338:156

    Google Scholar 

  7. Tremblay ME, Smith BW, Winefordner JD (1987) Anal Chim Acta 199:111

    Google Scholar 

  8. Kichelsen OB (1973) Analysis and application of the rare earth materials. NATO Advanced Study Institute, Oslo

    Google Scholar 

  9. Möller P, Cerny P, Saupe F (1980) Lanthanides, tantalum and niobium, Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Melard P (1980) Rare Earths Mod Sci Technol 2:517

    Google Scholar 

  11. Fey W (1991) Qualitätskontrolle handelsüblicher Verbindungen der Seltenen Erden (SE) und analytische Begleitung einer SE-Extraktionsplanung. Dissertation TH Darmstadt

  12. Ryabchikov DI, Ryabukhin VA (1970) Analytical chemistry of the element yttrium and the lanthanides. Arbor-Humphrey Science, London

    Google Scholar 

  13. Irving HMNH, Frieser H, West TS (1977) Compendium of analytical nomenclature — definitive rules. Pergamon Press, Oxford

    Google Scholar 

  14. Quality assurance for the chemical and process industries. American Society for Quality Control, ASQC, Milwaukee, Wisconsin 1987

  15. Long GL, Winefordner JD (1983) Anal Chem 55:712A

  16. Ortner HM (1987) Ultrapurity in metallurgy — facts and fiction. Proc. of the 31st Conference of the EOQC, Dt. Ges. f. Qualität, München, p 443

  17. Tyrek B (1985) Annual book of ASTM standard, Vol 0306

  18. Proske O, Ensslin F (1966, 1980) In: Chemikerausschuß d. Ges. Dt. Metallhütten- und Bergleute eV (Hrsg) Analyse der Metalle. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Dickens P, Möhl K (1987) In: Chemikerausschuß des Vereins Dt. Eisenhüttenleute (Hrsg) Handbuch für das Eisenhüttenlaboratorium, Giesling, Düsseldorf

    Google Scholar 

  20. Brusdeylins A (1973) Chem Ztg 97:543

    Google Scholar 

  21. Cheng J-K (1984) Inorg Chem Acta 94:249

    Google Scholar 

  22. Neeb R, Henze G (1986) Elektrochemische Analytik. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Marczenko Z (1986) Separation and spectrometric determination of elements, 2nd Ed. Wiley, New York

    Google Scholar 

  24. Wang J (1986) Talanta 33:494

    Google Scholar 

  25. Shmanankova GI (1981) Transl from Zavodskaya Laboratoriya. Industrial Laboratory 47:15

    Google Scholar 

  26. Gaokar UG, Eshwar MC (1986) Analyst 111:1393

    Google Scholar 

  27. Rojas FS, Ojeda CB (1988) Talanta 35:753

    Google Scholar 

  28. Yoshimura K, Taketatsu T (1987) Fresenius Z Anal Chem 328:553

    Google Scholar 

  29. Zeng Y, Guo N, Luo Q (1983) J Less Common Metals 94:271

    Google Scholar 

  30. Welz B (1983) Atomspektrometrie, 3 Aufl. VCH, Weinheim

    Google Scholar 

  31. Fresenius W, Lüderwald I (1989) Fresenius Z Anal Chem 334:595

    Google Scholar 

  32. Haines J (1986) Atomic Spectroscopy 7:161

    Google Scholar 

  33. Murugaiyan P (1982) Pure and Applied Chem 54:835

    Google Scholar 

  34. Ooghe W, Verbeek F (1974) Anal Chem 73:87

    Google Scholar 

  35. Yudelevich IG, Zelentsova LV, Beisel NF (1987) Talanta 34:147

    Google Scholar 

  36. Müller W, Maas K (1974) Themen zur Chemie der Lanthaniden und Actiniden. Hüthig, Heidelberg

    Google Scholar 

  37. Baumans PWJM, Tielrooy JA, Maessen FJMJ (1988) Spectrochim Acta 43:173

    Google Scholar 

  38. Mauri AR, Guardia de la M (1988) J Anal Atomic Spectrometry 3:1111

    Google Scholar 

  39. Murty PS, Barnes RM (1986) J Anal Atomic Spectrometry 1:145

    Google Scholar 

  40. Otruba V, Sommer L (1989) Fresenius Z Anal Chem 335:887

    Google Scholar 

  41. Zachmann DW (1988) Anal Chem 60:420

    Google Scholar 

  42. Chudinov EG, Ostroukhova II (1989) Fresenius Z Anal Chem 335:25

    Google Scholar 

  43. Danzer K (1989) Fresenius Z Anal Chem 335:869

    Google Scholar 

  44. Date AR, Gray AL (1985) Spectrochim Acta 40B:115

    Google Scholar 

  45. Wohlers CC (1985) ICP Information Newsletter 10:593

    Google Scholar 

  46. Montaser A, Golightly DW (1987) ICP in analytical atomic spectrometry. VCH, Weinheim

    Google Scholar 

  47. Welz B (1987) 4 Kolloquium Atomspektrometrische Spurenanalytik. Bodenseewerk Perkin-Elmer, Überlingen

    Google Scholar 

  48. Date AR, Hutchinson D (1987) J Anal Atomic Spectrometry 2:269

    Google Scholar 

  49. Gray AL (1985) Spectrochim Acta 40B:1525

    Google Scholar 

  50. Gray AL, Date AR (1983) Analyst 108:1033

    Google Scholar 

  51. Hoffmann HJ (1988) Laborpraxis, p 664

  52. Longerich HP, Fryer BJ, Strong DF, Kantipuly CJ (1987) Spectrochim Acta 42B:75

    Google Scholar 

  53. Prange A (1989) Spectrochim. Acta 44B:437

    Google Scholar 

  54. Vaughan MA, Horlick G (1986) Applied Spectroscopy 40:434

    Google Scholar 

  55. Bertin EP (1978) Introduction to X-ray spectrometry analysis. Plenum Press, New York

    Google Scholar 

  56. Bellary VP, Deshpande SS, Dixit RM, Sankaran AV (1981) Fresenius Z Anal Chem 309:380

    Google Scholar 

  57. Eby GN (1972) Anal Chem 44:2137

    Google Scholar 

  58. Linder HR, Seltner HD, Schreiber B (1978) Anal Chem 50:896

    Google Scholar 

  59. Machacek V, Weiss D (1985) X-Ray Spectrometry 14:53

    Google Scholar 

  60. Roelandts I (1981) Anal Chem 53:676

    Google Scholar 

  61. Hahn-Weinheimer P, Hirner A, Weber-Diefenbach K (1984) Grundlagen und praktische Anwendungen der RFA. Vieweg, Braunschweig

    Google Scholar 

  62. Labrecque JJ, Rosales PA, Mejias G (1986) Anal Chim Acta 188:9

    Google Scholar 

  63. Lal M, Choudhury RK, Agrawal RM (1987) X-Ray Spectrometry 16:23

    Google Scholar 

  64. Kolthoff IM, Elving PJ (1986) Treatise on Analytical Chemistry, 2nd Ed. Part I, Vol 24, Section K: nuclear activation and radioisotope methods of analysis, Wiley, New York

    Google Scholar 

  65. Soete de D, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley, New York

    Google Scholar 

  66. Bereznei T (1971) J Radioanal Chem 9:81

    Google Scholar 

  67. Crick JG, Lichte FE, Riddle GO, Beech CL (1986) Talanta 33:601

    Google Scholar 

  68. Kiels H (1980) Monatsh Chemie 111:23

    Google Scholar 

  69. Zilliacus R, Kaistila M, Rosenberg RJ (1982) J Radioanal Chem 71:323

    Google Scholar 

  70. Shand WA (1968) J Material Science 3:344

    Google Scholar 

  71. Zschornak G (1989) Atomdaten für die Röntgenfluoreszenzanalyse, Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fey, W., Lieser, K.H. Quality control of rare earth compounds by multielement analysis without chemical separation. Fresenius J Anal Chem 346, 896–904 (1993). https://doi.org/10.1007/BF00322747

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322747

Keywords

Navigation