Skip to main content
Log in

Light and electron microscopy of Rat kangaroo cells in mitosis

I. Formation and breakdown of the mitotic apparatus

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Rat kangaroo (PtK2) cells were fixed and embedded in situ. Cells in mitosis were studied with the light microscope and thin sections examined with the electron microscope. Pericentriolar, osmiophilic material, rather than the centrioles, is probably involved in the formation of astral microtubules during prophase. Centriole migration occurs during prophase and early prometaphase. The nuclear envelope ruptures first in the vicinity of the asters. Nuclear pore complexes disintegrate as envelope fragments are dispersed to the periphery of the mitotic spindle. Microtubules invade the nucleus through gaps of the fragmented envelope. The number of microtubules and the degree of spindle organization increase during prometaphase and are maximal at metaphase. At this stage, chromosomes are aligned on the spindle equator, sister kinetochores facing opposite poles. Cytoplasmic organelles are excluded from the spindle. Prominent bundles of kinetochore microtubules converge towards the poles. Spindles in cold-treated cells consist almost exclusively of kinetochore tubules. Separating daughter chromosomes in early anaphase are connected by chromatin strands, possibly reflecting the rupturing of fibrous connections occasionally observed between sister chromatids in prometaphase. Breakdown of the spindle progresses from late anaphase to telophase, except for the stem bodies. Chromosomes decondense to form two masses. Nuclear envelope reconstruction, probably involving endoplasmic reticulum, begins on the lateral faces. Nuclear pores reappear on membrane segments in contact with chromatin. Microtubules are absent from reconstructed daughter nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, H. T., Smith, G. H.: Nuclear pores: the pore-annulus relationship in thin section. J. Ultrastruct. Res. 30, 558–588 (1970).

    Google Scholar 

  • Abuelo, J. G., Moore, D. E.: The human chromosome. Electron microscopic observations on chromatin fiber organization. J. Cell Biol. 41, 73–90 (1969).

    Google Scholar 

  • Bajer, A.: Behavior and fine structure of spindle fibers during mitosis in endosperm. Chromosoma (Berl.) 25, 249–281 (1968).

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Formation of spindle fibers, kinetochore orientation, and behavior of ths nuclear envelope during mitosis in endosperm. Fine structural and in vitro studies. Chromosoma (Berl.) 27, 448–484 (1969).

    Google Scholar 

  • Bajer, A., Molè-Bajer, J.: Architecture and function of the mitotic spindle. In: Advances in cell and molecular biology (E. J. DuPraw, ed.), vol. 1, p. 213–266. New York: Academic Press 1971.

    Google Scholar 

  • Barnicot, N. A., Huxley, H. E.: Electron microscope observations on mitotic chromosomes. Quart. J. micr. Sci. 106, 197–214 (1965).

    Google Scholar 

  • Barer, R., Joseph, S., Meek, G. A.: The origin of the nuclear membrane. Exp. Cell Res. 18, 179–182 (1959).

    Google Scholar 

  • Behnke, O., Forer, A.: Some aspects of microtubules in spermatocyte meiosis in a crane fly (Nephrotoma suturalis Loew): Intranuclear and intrachromosomal microtubules. C. R. Trav. Lab. Carlsberg 35, 437–455 (1966).

    Google Scholar 

  • Bloom, W.: Electron microscopy of chromosomal changes in ambystomal cells during the mitotic cycle. Anat. Rec. 167, 253–276 (1970).

    Google Scholar 

  • Brinkley, B. R., Cartwright, J. Jr.: Organization of microtubules in the mitotic spindle: Differential effects of cold shock on microtubule stability. J. Cell Biol. 47, 25a (1970).

    Google Scholar 

  • Brinkley, B. R., Cartwright, J., Jr.: Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J. Cell Biol. 50, 416–431 (1971).

    Google Scholar 

  • Brinkley, B. R., Murphy, P., Richardson, L. C.: Procedure for embedding in situ selected cells cultured in vitro. J. Cell Biol. 35, 279–283 (1967).

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E.: The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma (Berl.) 19, 28–43 (1966).

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E.: Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis. In: Advances in cell biology (D. M. Prescott, L. Goldstein and E. McConkey, eds.) vol. 1, p. 119–185. New York: Appleton- Century-Crofts 1970.

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E., Hsu, T. C.: The effects of colcemid inhibition and reversal on the fine structure of the mitotic apparatus of Chinese hamster cells in vitro. J. Ultrastruct. Res. 19, 1–18 (1967).

    Google Scholar 

  • Chang, J. P, Gibley, C. W., Jr.: Ultrastructure of tumor cells during mitosis. Cancer Res. 28, 521–534 (1968).

    Google Scholar 

  • Comings, D. E.: The rationale for an ordered arrangement of chromatin in the interphase nucleus. Amer. J. hum. Genet. 20, 440–460 (1968).

    Google Scholar 

  • Comings, D. E., Okada, T. A.: Association of nuclear membrane fragments with metaphase and anaphase chromosomes as observed by whole mount electron microscopy. Exp. Cell Res. 63, 62–68 (1970a).

    Google Scholar 

  • Comings, D. E., Okada, T. A.: Association of chromatin fibers with the aunuli of the nuclear membrane. Exp. Cell Res. 62, 293–302 (1970b).

    Google Scholar 

  • Comings, D. E., Okada, T. A.: Condensation of chromosomes onto the nuclear membrane during prophase. Exp. Cell Res. 63, 471–473 (1970c).

    Google Scholar 

  • De Harven, E.: The centriole and the mitotic spindle. In: The nucleus (A. J. Dalton and F. Haguenau, eds.), p. 197–227. New York: Academic Press 1968.

    Google Scholar 

  • Dietz, R.: Polarisationsmikroskopische Befunde zur chromosomeninduzierten Spindelbildung bei der Tipulide Pales crocata (Nematocera). Zool. Anz., Suppl. 26, 131–138 (1963).

    Google Scholar 

  • DuPraw, E. J.: The organization of nuclei and chromosomes in honeybee embryonic cells. Proc. nat. Acad. Sci. (Wash.) 53, 161–168 (1965).

    Google Scholar 

  • DuPraw, E. J.: Cell and molecular biology, 739p. New York: Academic Press 1968.

    Google Scholar 

  • Franke, W. W.: On the universality of nuclear pore complex structure. Z. Zellforsch. 105, 405–429 (1970).

    Google Scholar 

  • Friedländer, M., Wahrman, J.: The spindle as a basal body distributor. A study in the meiosis of the male silkworm moth, Bombyx mori. J. Cell Sci. 7, 65–89 (1970).

    Google Scholar 

  • Fuge, H., Spindelb, Mikrotubuliverteilung und Chromosomenstruktur während der I. meiotischen Teilung der Spermatocyten von Pales ferruginea. Eine elektronenmikroskopische Analyse. Z. Zellforsch. 120, 579–599 (1971).

    Google Scholar 

  • Fulton, C.: Centrioles. In: Origin and continuity of cell organelles (J. Reinert and H. Ursprung, eds.), p. 170–221. New York: Springer 1971.

    Google Scholar 

  • Gall, J. G.: Centriole replication. A study of spermatogenesis in the snail Viviparus. J. biophys. biochem. Cytol. 10, 163–193 (1961).

    Google Scholar 

  • Ikeuchi, T., Sanbe, M., Weinfeld, H., Sandberg, A. A.: Induction of nuclear envelopes around metaphase chromosomes after fusion with interphase cells. J. Cell Biol. 51, 104–115 (1971).

    Google Scholar 

  • Inoué, S.: Organization and function of the mitotic spindle. In: Primitive motile systems in cell biology (R. D. Allen and N. Kamiya, eds.), p. 549–594. New York: Academic Press 1964.

    Google Scholar 

  • Inoué, S., Ellis, G. W., Salmon, E. D., Fuseler, J. W.: Rapid measurement of spindle birefringence during controlled temperature shifts. J. Cell Biol. 47, 95a-96a (1970).

    Google Scholar 

  • Inoué, S., Sato, H.: Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J. gen. Physiol. 50, 259–288 (1967).

    Google Scholar 

  • Jensen, C., Bajer, A.: Effects of dehydration on the microtubules of the mitotic spindle. Studies in vitro and with the electron microscope. J. Ultrastruct. Res. 26, 367–386 (1969).

    Google Scholar 

  • Jokelainen, P. T.: The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19–44 (1967).

    Google Scholar 

  • Journey, L. J., Burdman, J., George, P.: Ultrastructural studies on tissue culture cells treated with vincristine (NSC-67574). Cancer Chemother. Rep. 52, 509–517 (1968).

    Google Scholar 

  • Krishan, A., Buck, R. C.: Structure of the mitotic spindle in L strain fibroblasts. J. Cell Biol. 24, 433–444 (1965).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Luykx, P.: Cellular mechanisms of chromosome distribution. Int. Rev. Cytol. Suppl. 2, 173 p. New York: Academic Press 1970.

  • Mazia, D.: Mitosis and the physiology of cell division. In: The cell (J. Brachet and A. E. Mirsky, eds.), vol. 3, p. 77–412. New York: Academic Press 1961.

    Google Scholar 

  • McIntosh, J. R., Hepler, P. K., Wie, D. G. van: Model for mitosis. Nature (Lond.) 224, 659–663 (1969).

    Google Scholar 

  • McIntosh, J. R., Landis, S. C.: The distribution of spindle microtubules during mitosis in cultured human cells. J. Cell Biol. 49, 468–497 (1971).

    Google Scholar 

  • Millonig, G.: Advantages of a phosphate buffer for OsO4 solutions in fixation. J. appl. Phys. 32, 1637 (abstr.) (1961).

    Google Scholar 

  • Molè-Bajer, J.: Fine structural studies of apolar mitosis. Chromosoma (Berl.) 26, 427–448 (1969).

    Google Scholar 

  • Murray, R. G., Murray, A. S., Pizzo, A.: The fine structure of mitosis in rat thymic lymphocytes. J. Cell Biol. 26, 601–619 (1965).

    Google Scholar 

  • Nicklas, R. B.: Mitosis. In: Advances in cell biology (D. M. Prescott, L. Goldstein, and E. McConkey, eds.), vol 2, p. 225–297. New York: Appleton-Century- Crofts 1971.

    Google Scholar 

  • Pardue, M. L., Gall, J. G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970).

    Google Scholar 

  • Pickett-Heaps, J. D.: The evolution of the mitotic apparatus: An attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios 1, 257–280 (1969).

    Google Scholar 

  • Porter, K. R., Machado, R. D.: Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J. biophys. biochem. Cytol. 7, 167–180 (1960).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Robbins, E., Gonatas, N. K.: The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol. 21, 429–463 (1964).

    Google Scholar 

  • Robbins, E., Jentzsch, G.: Ultrastructural changes in the mitotic apparatus at the metaphase-to-anaphase transition. J. Cell Biol. 40, 678–691 (1969).

    Google Scholar 

  • Robbins, E., Jentzsch, G., Micali, A.: The centriole cycle in synchronized HeLa cells. J. Cell Biol. 36, 329–339 (1968).

    Google Scholar 

  • Southern, E. M.: Base sequence and evolution of guinea-pig α-satellite DNA. Nature (Lond.) 227, 794–798 (1970).

    Google Scholar 

  • Stubblefield, E., Brinkley, B. R.: Architecture and function of the mammalian centriole. In: Formation and fate of cell organelles (K. B. Warren, ed.), p. 175–218. New York: Academic Press 1967.

    Google Scholar 

  • Stubblefield, E., Wray, W.: Architecture of the Chinese hamster metaphase chromosome. Chromosoma (Berl.) 32, 262–294 (1971).

    Google Scholar 

  • Tilney, L. G.: How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys. J. Cell Biol. 51, 837–854 (1971).

    Google Scholar 

  • Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958).

    Google Scholar 

  • Wilson, E. B.: The cell in development and heredity, 3rd ed. 1232 p. New York: MacMillan 1934.

    Google Scholar 

  • Yunis, J. J., Yasmineh, W. G.: Satellite DNA in constitutive heterochromatin of the guinea pig. Science 168, 263–265 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This report is to a large part based on a dissertation submitted by the author to the Graduate Council of the University of Florida in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roos, UP. Light and electron microscopy of Rat kangaroo cells in mitosis. Chromosoma 40, 43–82 (1973). https://doi.org/10.1007/BF00319836

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319836

Keywords

Navigation