Skip to main content
Log in

Plastid genomes of the Rhodophyta and Chromophyta constitute a distinct lineage which differs from that of the Chlorophyta and have a composite phylogenetic origin, perhaps like that of the Euglenophyta

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A phylogenetic tree has been constructed from comparisons of entire 16S rRNA gene sequences from different prokaryotes and from several algal plastids. According to this study, and to previous work on the ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) large and small subunit genes, we postulate that: (1) rhodophyte and chromophyte plastid genomes have a common, composite phylogenetic origin which implies at least two different ancestors, a cyanobacterial and a β-proteobacterial ancestor; (2) chlorophyte (green algae and land plants) plastids have a cyanobacterial ancestor which probably differs from that of rhodophyte and chromophyte plastids, and in any case constitute a different lineage; (3) euglenophyte plastid genomes also seem to have a composite phylogenetic origin which involves two different lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assali NE, Mache R, Loiseaux-de Goër S (1990) Plant Mol Biol 15:307–315

    Google Scholar 

  • Assali NE, Martin WF, Somerville CC, Loiseaux-de Goër S (1991) Plant Mol Biol (in press)

  • Boczar BA, Delaney TP, Cattolico RA (1989) Proc Natl Acad Sci USA 86:4996–4999

    Google Scholar 

  • Buchheim MA, Turmel M, Zimmer EA, Chapman RL (1990) J Phycol 26:689–699

    Google Scholar 

  • Carbon P, Ehresmann C, Ehresmann B, Ebel JP (1979) Eur J Biochem 100:399–410

    Google Scholar 

  • Douglas SE, Durnford DG, Morden CW (1990) J Phycol 26:500–508

    Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Nature 350:148–151

    Google Scholar 

  • Dron M, Rahire M, Rochaix JD (1982) Nucleic Acids Res 10:7609–7620

    Google Scholar 

  • Gibbs SP (1981) Ann NY Acad Sci 361:193–207

    Google Scholar 

  • Gibbs SP (1990) In: Weissner W, Robinson DG, Starr RC (eds) Experimental phycology, vol 1. Springer Verlag, Berlin, New York, pp 145–157

    Google Scholar 

  • Graf L, Roux E, Stutz E, Kössel H (1982) Nucleic Acids Res 10:6369–6381

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YO, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) Mol Gen Genet 217:185–194

    Google Scholar 

  • Hirsch PR (1990) In: Fry JC, Dray MJ (eds) Bacterial genetics in natural environments. Chapman Hall, London, UK, pp 31–40

    Google Scholar 

  • Huss VAR, Giovannoni SJ (1989) Nucleic Acids Res 17:9487

    Google Scholar 

  • Loiseaux-de Goër S, Markowicz Y, Sommerville CC (1991) In: Mache R, Stutz E, Subramanian AR (eds) The translational apparatus of photosynthetic organelles. Nato Asi Series, vol H55, pp 19–30

  • Maid U, Zetsche K (1990) Nucleic Acids Res 18:3996

    Google Scholar 

  • Maynard-Smith J, Dowson CG, Spratt BG (1991) Nature 349:29–31

    Google Scholar 

  • Markowicz Y, Loiseaux-de Goër S, Mache R (1988a) Curr Genet 14:599–608

    Google Scholar 

  • Markowicz Y, Mache R, Loiseaux-de Goër S (1988b) Plant Mol Biol 10:465–469

    Google Scholar 

  • Neefs JM, Van de Peer Y, Hendriks L, De Wachter R (1990) Nucleic Acids Res 18:2237–2317

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota SI, Inokuchi H, Ozeki H (1986) Plant Mol Biol Rep 4:148–175

    Google Scholar 

  • Schwarz Z, Kössel H (1980) Nature 283:739–742

    Google Scholar 

  • Siemeister G, Hachtel W (1990) Curr Genet 17:433–438

    Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) Nature 337:380–382

    Google Scholar 

  • Tohdoh N, Sugiura M (1982) Gene 17:213–218

    Google Scholar 

  • Tomioka N, Sugiura M (1983) Mol Gen Genet 191:46–50

    Google Scholar 

  • Valentin K, Zetsche K (1990a) Plant Mol Biol 15:575–584

    Google Scholar 

  • Valentin K, Zetsche K (1990b) Mol Gen Genet 222:425–430

    Google Scholar 

  • Von Allmen JM, Stutz E (1988) Nucleic Acids Res 16:1200

    Google Scholar 

  • Witt D, Stackebrandt E (1988) Arch Microbiol 150:244–248

    Google Scholar 

  • Woese CR (1987) Microbiol Rev 51:221–271

    Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Proc Natl Acad Sci USA 82:4443–4447

    Google Scholar 

  • Yamada T (1988) Nucleic Acids Res 16:9865

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.-D. Rochaix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markowicz, Y., de Goër, S.L. Plastid genomes of the Rhodophyta and Chromophyta constitute a distinct lineage which differs from that of the Chlorophyta and have a composite phylogenetic origin, perhaps like that of the Euglenophyta. Curr Genet 20, 427–430 (1991). https://doi.org/10.1007/BF00317073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317073

Key words

Navigation