Skip to main content
Log in

Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Based upon a compilation and analysis of O-isotope data for Neogene volcanic rocks worldwide, the δ18O variation for 743 basalts (historic lavas, submarine glasses, and lavas with <0.75 wt% H2O) is +2.9 to +11.4‰. Mid-ocean-ridge basalt (MORB) has a uniform O-isotope composition with δ180=+5.7±0.2‰. Basalts erupted in different tectonic settings have mean 18O/16O ratios that are both lower and higher than MORB, with continental basalts enriched in 18O by ca. 1‰ over oceanic basalts. The δ18O range for the subset of 88 basalts with Mg# [100·Mg(Mg+Fe2+)] 75–68, considered to be unmodified primary mantle partial melts, is +3.6 to +8.7‰. These features are a clear indication that: (1) the Earth's upper mantle is heterogeneous with respect to its O-isotope composition; (2) that both low-18O and high-18O reservoirs have contributed to basalt petrogenesis. Large-ion lithophile element-enriched basalts associated with subduction at convergent plate margins are slightly enriched in 18O, a characteristic that is considered to be an intrinsic feature of the subduction process. Intraplate oceanic and continental basalts have highly variable 18O/16O ratios, with individual localities displaying δ18O ranges in excess of 1.5 to 2‰. Systematic co-variations between O-, Sr-, Nd-, and Pb-isotope ratios reflect the same principal intramantle end-member isotopic components (DMM, HIMU, EM-I, EM-II) deduced from radiogenic isotope considerations and, therefore, imply that a common process is responsible for the origin of upper mantle stable and radiogenic isotope heterogeneity, namely the recycling of lithospheric material into the mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323:123–127

    Google Scholar 

  • Alt JC, Muehlenbachs K, Honnorez J (1986) An oxygen isotopic profile through the upper kilometer of the ocean crust, DSDP Hole 504B. Earth Planet Sci Lett 80:217–229

    Google Scholar 

  • Arculus RJ (1976) Geology and geochemistry of the alkalic basalt-andesite association of Grenada, Lesser Antilles island arc. Geol Soc Amer Bull 87:612–624

    Google Scholar 

  • Armstrong RL (1968) A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev Geophys 6:175–199

    Google Scholar 

  • Arndt NT, Christensen U (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. J Geophys Res 97:10967–10981

    Google Scholar 

  • Arndt NT, Goldstein SL (1989) An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161:201–212

    Google Scholar 

  • Barrat JA, Jahn BM, Fourcade S, Joron JL (1993) Magma genesis in an ongoing rifting zone: the Tadjoura Gulf (Afar area). Geochim Cosmochim Acta 57:2291–2302

    Google Scholar 

  • Bohlen SR, Mezger K (1989) Origin of granulite terrains and the formation of lowermost continental crust. Science 244:326–329

    Google Scholar 

  • Byers CD, Garcia MO, Muenow DW (1985) Volatiles in pillow rim glasses from Loihi and Kilauea volcanoes, Hawaii. Geochim Cosmochim Acta 49:1887–1896

    Google Scholar 

  • Carlson RW, Lugmair GW, Macdougall JD (1981) Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochim Cosmochim Acta 45:2483–2499

    Google Scholar 

  • Cerling TE, Brown FH, Bowman JR (1985) Low-temperature alteration of volcanic glasses: hydration, Na, K, 18O, and Ar mobility. Chem Geol 52:281–293

    Google Scholar 

  • Chase CG (1981) Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet Sci Lett 52:277–284

    Google Scholar 

  • Chauvel C, Hofmann AW, Vidal P (1992) HIMU-EM: the French Polynesian connection. Earth Planet Sci Lett 110:99–119

    Google Scholar 

  • Cocker JD, Griffin BJ, Muehlenbachs K (1982) Oxygen and carbon isotope evidence for sea-water-hydrothermal alteration of the Macquarie Island ophiolite. Earth Planet Sci Lett 61:112–122

    Google Scholar 

  • Condomines M, Gronvold K, Hooker P, Muehlenbachs K, O'Nions RK, Oskarsson N, Oxburgh R (1983) Helium, oxygen, strontium, and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66:125–136

    Google Scholar 

  • Cox KG (1980) A model for flood basalt volcanism. J Petrol 21:629–650

    Google Scholar 

  • Davidson JP, Harmon RS (1989) Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles. Earth Planet Sci Lett 95:255–270

    Google Scholar 

  • Davidson JP, McMillan NJ, Moorbath S, Wörner G, Harmon RS, Lopez-Escobar L (1990) The Nevados de Payachata volcanic region (18°S/69°W, N. Chile). II. Evidence for widespread crustal involvement in Andean magmatism. Contrib Mineral Petrol 105:412–432

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotope variations and petrogenetic models. Geophys Res Lett 3:249–252

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1977) The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophys Res Lett 4:455–458

    Google Scholar 

  • Duncker KE, Wolff JA, Harmon RS, Leat PT, Dickin AP, Thompson R (1991) Diverse mantle and crustal components in lavas of the Cerros del Rio volcanic field, Rio Grande Rift, New Mexico. Contrib Mineral Petrol 108:331–345

    Google Scholar 

  • Ellam RM, Harmon RS (1990) Oxygen isotope constraints on the crustal contribution to the subduction-related magmatism of the Aeolian Islands, S. Italy. J Volcanol Geothermal Res 44:105–122

    Google Scholar 

  • Elliott TR, Hawkesworth CJ, Grönvold K (1991) Dynamic melting of the Iceland plume. Nature 351:20–206

    Google Scholar 

  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram, GA, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, east-central Europe. J Petrol 34:317–341

    Google Scholar 

  • Ferrara G, Laurenzi MA, Taylor HP, Tonarini S, Turi B (1985) Oxygen and strontium isotope studies of K-rich volcanic rocks from the Alban Hills, Italy. Earth Planet Sci Lett 75:13–28

    Google Scholar 

  • Ferrara G, Preite-Martinez M, Taylor HP, Tonarini S, Turi B (1986) Evidence for crustal assimilation, mixing of magmas, and a 87Sr-rich upper mantle: an oxygen and strontium isotope study of the M. Vulsini volcanic area, central Italy. Contrib Mineral Petrol 92:269–280

    Google Scholar 

  • Frey FA, Walker N, Stakes D, Hart SR, Nielson R (1993) Geochemical characteristics of basaltic glasses from the AMAR and FAMOUS axial valleys, Mid-Atlantic Ridge (36°S–37°S): petrogenetic implications. Earth Planet Sci Lett 115:117–136

    Google Scholar 

  • Friedman I (1967) Water content and deuterium in pumice from the 1959–60 eruption of Kilauea volcano. US Geol Surv Prof Pap 575-B:120–127

    Google Scholar 

  • Galer SJG, O'Nions RK (1985) Residence time of thorium, uranium, and lead in the mantle with implications for mantle convection. Nature 316:778–782

    Google Scholar 

  • Garcia MO, Liu NWK, Muenow DW (1979) Volatiles in submarine volcanic rocks from the Mariana island arc and trough. Geochim Cosmochim Acta 43:305–312

    Google Scholar 

  • Garcia MO, Muenow DW, Aggrey KE, O'Neil JR (1989) Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses. J Geophys Res 94:10525–10538

    Google Scholar 

  • Garcia MO, Jorgenson BA, Mahoney JJ, Ito E, Irving AJ (1993) An evaluation of temporal geochemical evolution of Loihi summit lavas: results from Alvin submersible dives. J Geophys Res 98:537–550

    Google Scholar 

  • Garlick GD, MacGregor ID, Vogel DE (1971) Oxygen isotope ratios in eclogites from kimberlites. Science 172:1025–1027

    Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust: Samail ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Google Scholar 

  • Grunder AL (1987) Low-δ18O silicic volcanic rocks at the Calabozos caldera complex, southern Andes: evidence for upper crustal contamination. Contrib Mineral Petrol 95:71–81

    Google Scholar 

  • Halliday AN, Dickin AP, Fallick AE, Fitton JG (1988) Mantle dynamics: a Nd, Sr, Pb, and O isotopic study of the Cameroon Line Volcanic Chain. J Petrol 29: 181–211

    Google Scholar 

  • Hansen GN, Langmuir CH (1978) Modelling of major elements in mantle-melt systems using trace element approaches. Geochim Cosmochim Acta 42: 725–742

    Google Scholar 

  • Harmon RS, Gerbe M-C (1992) Oxygen isotope geochemistry of a compositionally zoned magma chamber: the 1982–83 eruption at Galunggung volcano, Java (Indonesia). J Petrol 33: 585–605

    Google Scholar 

  • Harmon RS, Hoefs J (1984) O-isotope relationships in Cenozoic volcanic rocks: evidence for a heterogeneous mantle source and open-system magmagenesis. In: Dungan MA, Grove TL, Hildreth W (eds) Proc Conf Open Magmatic Systems, Southern Methodist Univ Inst Study Earth Man Spec Publ: 69–71

  • Harmon RS, Hoefs J (1993) Oxygen isotopes in Neogene volcanic rocks: a global database. Univ Göttingen (Geochem Inst) Final Project rep Alexander von Humboldt Foundation

  • Harmon RS, Thorpe RS, Francis PW (1981) Petrogenesis of Andean andesites from combined O−Sr isotope relationships. Nature 290: 396–399

    Google Scholar 

  • Harmon RS, Barreiro BA, Moorbath S, Francis PW, Thorpe RS, Hoefs J, Deruelle B, McHugh J, Viglino JA (1984) Regional 0-, Sr-, and Pb-isotope relationships in Late Cenozoic calc-alkaline lavas in the Andean Cordillera. J Geol Soc London 141: 803–822

    Google Scholar 

  • Harmon RS, Kempton PD, Stosch H-G, Hoefs J, Ionov DA (1986/1987) 18O/16O ratios in anhydrous spinel lherzolite xenoliths from the Shavaryn-Tsaram volcano, Mongolia. Earth Planet Sci Lett 81: 193–202

    Google Scholar 

  • Harmon RS, Hoefs J, Wedepohl KH (1987) Stable isotope (O,H,S) relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W. Germany. Contrib Mineral Petrol 95: 350–369

    Google Scholar 

  • Hart SR (1984) The DUPAL anomaly: a large scale isotopic anomaly in the southern hemisphere. Nature 309: 350–369

    Google Scholar 

  • Hart SR (1988) Heterogeneous mantle domains: signatures, genesis, and mixing chronologies. Earth Planet Sci Lett 90: 273–296

    Google Scholar 

  • Hawkesworth CJ, O'Nions RK, Pankhurst RJ, Hamilton PJ, Evensen NM (1977) A geochemical study of island arc and back-arc tholeiites from the Scotia Sea. Earth Planet Sci Lett 36: 253–262

    Google Scholar 

  • Hémond C, Condomines M, Fourcade S, Allegre CJ, Oskarsson N, Javoy M (1988) Thorium, strontium, and oxygen isotope geochemistry in recent tholeiites from Iceland: crustal influence on mantle-derived magmas. Earth Planet Sci Lett 87: 273–285

    Google Scholar 

  • Hémond C, Arndt NT, Lichtenstein U, Hofmann AW, Oskarsson N, Steinthorosson S (1993) The heterogeneous Iceland plume: Nd−Sr−O isotopes and trace element constraints. J Geophys Res 98: 15833–15850

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98: 455–489

    Google Scholar 

  • Hildreth W, Halliday AN, Christiansen RL (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. J Petrol 32: 63–138

    Google Scholar 

  • Hofmann AW (1989) Geochemistry and models of mantle circulation. Philos Trans Roy Soc London A328: 425–439

    Google Scholar 

  • Hofmann AW, White WM (1980) The role of subducted oceanic crust in mantle evolution. Carnegie Inst Washington Yearb 79: 477–483

    Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57: 421–436

    Google Scholar 

  • Holm PM, Munksgaard NC (1982) Evidence for mantle metasomatism: oxygen and strontium isotope study of the Vulsinian District, Italy. Earth Planet Sci Lett 60: 376–388

    Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The fluid dynamics of crustal melting by injection of basaltic sills. Trans Roy Soc Edinburgh Earth Sci 79: 237–243

    Google Scholar 

  • Ionov DA, Harmon RS, France-Lanord C, Greenwood P, Ashchepkov IV (1994) Oxygen isotope composition of garnet and spinel peridotites in the continental mantle: evidence form the Vitim xenolith suite, southern Siberia. Geochim Cosmochim Acta 58: 1463–1470

    Google Scholar 

  • Ito E, Stern RJ (1985/86) Oxygen- and strontium-isotopic investigations of subduction zone volcanism; the case of the Volcano Arc and the Marianas Island Arc. Earth Planet Sci Lett 76: 312–320

    Google Scholar 

  • Ito E, Clayton RN (1983) Submarine metamorphism of gabbros from the Mid-Cayman Rise: an oxygen isotope study. Geochim Cosmochim Acta 47: 535–546

    Google Scholar 

  • Ito E, White WM, Göpel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62: 157–176

    Google Scholar 

  • Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wanke H (1984) Anorthositic oceanic crust in the Archean. Lunar Planet Sci 15: 395–396

    Google Scholar 

  • Jakobsson SP (1979) Petrology of recent basalts of the eastern volcanic zone, Iceland. Acta Islandica 26: 1–103

    Google Scholar 

  • James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas I. Local geochemical variations. Earth Planet Sci Lett 57: 4 7–62

    Google Scholar 

  • Javoy M (1980) 18O/16O and D/H ratios in high-temperature peridotites. Colloq Int CNRS 272: 279–287

    Google Scholar 

  • Javoy M, Stillman CJ, Pineau F (1986) Oxygen and hydrogen isotope studies on the basal complexes of the Canary Islands: implications on the conditions of their genesis. Contrib Mineral Petrol 92: 225–235

    Google Scholar 

  • Kay RW, Kay SM (1990) Creation and destruction of lower continental crust. Geol Rundsch 80: 259–278

    Google Scholar 

  • Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim Cosmochim Acta 56: 971–986

    Google Scholar 

  • Kempton PD, Harmon RS, Stosch H-G, Hoefs J, Hawkesworth CJ (1988) Open-system O-isotope behavior and trace element enrichment in the sub-Eifel Mantle. Earth Planet Sci Lett 89: 273–287

    Google Scholar 

  • Kempton PD, Hawkesworth CJ, Fowler MB (1991) Geochemistry and isotopic composition of gabbros from layer 3 of the Indian Ocean crust, Hole 735B. In: Von Herzen RP, Robinson PT et al. (eds) Proc Ocean Drilling Programme Sci Results. 118: 127–141

  • Kesson SE, Ringwood AE (1989) Slab-mantle interactions. 1. Sheared garnet peridotite xenoliths — examples of Watadi-Benioff zones? Chem Geol 78: 83–96

    Google Scholar 

  • Kurz MD, Kammer DP (1991) Isotopic evolution of Mauna Loa volcano: Earth Planet Sci Lett 103: 339–353

    Google Scholar 

  • Kurz MD, Jenkins WJ, Hart SR, Clague D (1983) Helium isotope variations in volcanic rocks from Loihi seamount and the island of Hawaii. Earth Planet Sci Lett 66: 388–406

    Google Scholar 

  • Kurz MD, Meyer PS, Sigurdsson H (1985) Helium isotope systematics within the neovolcanic zones of Iceland. Earth Planet Sci Lett 74: 291–305

    Google Scholar 

  • Kyser TK (1990) Stable isotopes in the continental lithospheric mantle. In: Menzies MA (ed) Continental mantle. Oxford Monogr Geol Geophys 16: 127–156

  • Kyser TK, O'Neil JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 38: 2123–2133

    Google Scholar 

  • Kyser TK, O'Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77: 11–23

    Google Scholar 

  • Kyser TK, O'Neil JR, Carmichael ISE (1982) Genetic relations among basic lavas and ultramafic nodules: evidence from oxygen isotope compositions. Contrib Mineral Petrol 81: 88–102

    Google Scholar 

  • Langmuir CH, Vocke RDJ, Hanson GN, Hart SR (1978) A general mixing model with applications to Icelandic basalts. Earth Planet Sci Lett 37: 380–392

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based upon the total alkali-silica diagram. J Petrol 27: 745–750

    Google Scholar 

  • Magaritz M, Taylor HP (1976) Oxygen, hydrogen, and carbon isotope studies of the Franciscan formation, Coast Ranges, California. Geochim Cosmochim Acta 47: 631–644

    Google Scholar 

  • Matsuhisa Y (1979) Oxygen isotopic compositions of volcanic rocks from the east Japan island arcs and their bearing on petrogenesis. J Volcanol Geothermal Res 5: 271–296

    Google Scholar 

  • Matsuhisa Y, Kurasawa H (1983) Oxygen and strontium isotopic characteristics of calc-alkaline rocks from the central and western Japan arcs: evaluation of contribution of crustal components to the magmas. J Volcanol Geothermal Res 18: 483–510

    Google Scholar 

  • McBirney AR, Taylor HP, Armstrong RL (1987) Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. Contrib Mineral Petrol 95: 4–20

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102: 358–374

    Google Scholar 

  • McKenzie D, O'Nions RK (1983) Mantle reservoirs and ocean island basalts. Nature 301: 229–231

    Google Scholar 

  • McMurtry GM, Yeh H-W (1981) Hydrothermal clay mineral formation of East Pacific Rise and Bauer Basin sediments. Chem Geol 32: 189–205

    Google Scholar 

  • Moore JG (1970) Water content of basalt erupted on the ocean floor. Contrib Mineral Petrol 28: 272–279

    Google Scholar 

  • Morris JD; Tera F, Leeman WP (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344: 31–36

    Google Scholar 

  • Muehlenbachs K, Clayton RN (1972) Oxygen isotope studies of fresh and weathered submarine basalts. Can J Earth Sci 9: 172–184

    Google Scholar 

  • Muehlenbachs K, Kushiro I (1974) Oxygen isotope exchange and equilibrium of silicates with CO2 and O2. Carnegie Inst Washington Yearb 13: 232–236

    Google Scholar 

  • Muehlenbachs K, Anderson AT, Sigvaldason GE (1974) Low-18O basalts from Iceland. Geochim Cosmochim Acta 38: 577–588

    Google Scholar 

  • Neal CR, Taylor LA, Davidson JP, Holden P, Halliday AN, Nixon PH, Paces T, Clayton RN, Mayeda TK (1990) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa. 2. Sr, Nd, and O isotope geochemistry. Earth Planet Sci Lett 99: 362–379

    Google Scholar 

  • Nicholls IA, Ringwood AE (1973) Effects of water on olivine stability in tholeiites and the production of SiO2-saturated magmas in the arc environment. J Geol 81: 285–300

    Google Scholar 

  • Nicholson H, Condomines M, Fitton GJ, Fallick AE, Grönvold K, Rogers G (1991) Assimilation beneath Krafla, Iceland. J Petrol 32: 1005–1020

    Google Scholar 

  • Ongley JS, Basu AR, Kyser TK (1987) Oxygen isotopes in coexisting garnets, clinopyroxenes, and phlogopites of Roberts Victor eclogites: implications for petrogenesis and mantle metasomatism. Earth Planet Sci Lett 83: 80–84

    Google Scholar 

  • Patchett PJ (1980) Thermal effects of basalt on continental crust and crustal contamination of magmas. Nature 283: 559–561

    Google Scholar 

  • Patino Douce AE, Humphreys ED, Johnston AD (1990) Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth Planet Sci Lett 97: 290–315

    Google Scholar 

  • Pearson DG, Davies GR, Nixon PH, Greenwood PB, Mattey DP (1991) Oxygen isotope evidence for the origin of pyroxenites in the Beni Bousera peridotite massif, North Morocco: derivation from subducted oceanic lithosphere. Earth Planet Sci Lett 102: 289–301

    Google Scholar 

  • Ringwood AE (1982) Phase transformations and differentiation in subducted lithosphere — implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J Geol 90: 611–643

    Google Scholar 

  • Ringwood AE (1990) Slab-mantle interactions. 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol 82: 187–207

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29: 275–279

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Mattey DP, Harmon RS (1986) Sediment subduction and the source of potassium in orogenic leucitites. Geology 15: 451–453

    Google Scholar 

  • Saunders A, Tarney J (1989) Back-arc basins. In: Floyd PA (ed) Oceanic basalts. Blackie-Van Nostrand Reinhold, London, pp 219–263

    Google Scholar 

  • Schiffman P, Williams AE, Evarts RC (1984) Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California. Earth Planet Sci Lett 70: 207–220

    Google Scholar 

  • Schilling J-G (1973) Iceland mantle plume. Nature 246: 141–143

    Google Scholar 

  • Schilling J-G, Zajac M, Evans R, Johnston T, White WM, Devine JD, Kingsley K (1983) Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29°N to 73°N. Am J Sci 283: 510–586

    Google Scholar 

  • Sekine T, Wyllie PJ (1982) The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zones. Contrib Mineral Petrol 81: 190–202

    Google Scholar 

  • Sigmarsson O, Condomines M, Grönvold K, Thordarson T (1991a) Extreme heterogeneity in the 1783–84 Lakagigar eruption: origin of a large volume of evolved basalt in Iceland. Geophys Res Lett 18: 2229–2232

    Google Scholar 

  • Sigmarsson O, Hémond C, Condomines M, Fourcade S, Oskarsson N (1991b) Origin of silicic magma in Iceland revealed by Th isotopes. Geology 19: 621–624

    Google Scholar 

  • Sigmarsson O, Condomines M, Ibarrola E (1992a) 238U−230Th radioactive disequilibria in historic lavas from the Canary Islands and genetic implications. J Volcanol Geotherm Res 54: 145–156

    Google Scholar 

  • Sigmarsson O, Condomines M, Fourcade S (1992b) A detailed Th, Sr, and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Mineral Petrol 112: 20–34

    Google Scholar 

  • Sigmarsson O, Condomines M, Fourcade S (1992c) Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland. Constraints from Th, Sr, and O isotopes. Earth Planet Sci Lett 110: 149–162

    Google Scholar 

  • Singer BS, O'Neil JR, Brophy JG (1992) Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas. Geology 20: 367–370

    Google Scholar 

  • Spooner ETC, Beckinsale RD, Fyfe WS, Smewing JD (1974) 18O-enriched ophiolitic metabasic rocks from E Liguria (Italy), Pindos (Greece), and Troodos (Cyprus). Contrib Mineral Petrol 47: 41–62

    Google Scholar 

  • Staudigel H, Zindler A, Hart SR, Leslie T, Chen C-Y, Clague D (1984) The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii. Earth Planet Sci Lett 69: 13–29

    Google Scholar 

  • Stern CR, Frey FA, Futa K, Zartman RE, Peng Z, Kyser TK (1990) Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America. Contrib Mineral Petrol 104: 294–308

    Google Scholar 

  • Sun S-S (1980) Lead isotopic study of volcanic rocks from mid-ocean ridges, ocean islands, and island arcs. Philos Trans Roy Soc London A297: 409–445

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MD (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ 42, pp 313–345

  • Taylor BE (1986) Magmatic volatiles: isotopic variation of C, H, and S. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in Mineralogy 16) Mineral Soc Am, Washington, DC, pp 185–225

    Google Scholar 

  • Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306: 541–545

    Google Scholar 

  • Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol 19: 1–71

    Google Scholar 

  • Taylor HP (1977) Water/rock interaction and the origin of H2O in granitic batholiths. J Geol Soc London 133: 509–558

    Google Scholar 

  • Taylor HP, Turi B (1976) High-18O igneous rocks from the Tuscan magmatic province, Italy. Contrib Mineral Petrol 55: 33–54

    Google Scholar 

  • Taylor HP, Giannetti B, Turi B (1979) Oxygen isotope geochemistry of the potassic igneous rocks from the Roccamonfina Volcano, Roman Comagmatic Region, Italy. Earth Planet Sci Lett 46: 81–106

    Google Scholar 

  • Turi B, Taylor HP (1976) Oxygen isotope studies of potassic volcanic rocks of the Roman Province, central Italy. Contrib Mineral Petrol 55: 1–31

    Google Scholar 

  • Turi B, Taylor HP, Ferrara G (1991) Comparison of 18O/16O and 87Sr/86Sr in volcanic rocks from the Pontine Islands, M. Ercini, and Campania with other areas in Italy. In: Taylor HP, O'Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. Geochem Soc Spec Publ 3: 325–337

  • Valley JW, Taylor HP, O'Neil JR (1986) Stable isotopes in high temperature geological processes. (Reviews in Mineralogy 16) Mineral Soc Am, Washington, DC, p 570

    Google Scholar 

  • Varenkamp J, Kalamarides RI (1989) Hybridization processes in leucite tephrites from Vulsini, Italy, and the evolution of the Italian potassic suite. J Geophys Res 94: 4603–4618

    Google Scholar 

  • Vogel DE, Garlick (1970) Oxygen isotope ratios in metamorphic eclogites. Contrib Mineral Petrol 28: 183–191

    Google Scholar 

  • Vollmer R (1983) Earth degassing, mantle metasomatism, and isotopic evolution of the mantle. Geology 11: 452–454

    Google Scholar 

  • von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29: 279–316

    Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104: 381–397

    Google Scholar 

  • Weis D, Demaiffe D, Cauet S, Javoy M (1987) Sr, Nd, O, and H isotopic ratios in Ascension Island lavas and plutonic inclusions; cogenetic origin. Earth Planet Sci Lett 82: 255–268

    Google Scholar 

  • White WM (1985) Sources of oceanic basalts: radiogenic isotope evidence. Geology 13: 115–118

    Google Scholar 

  • White WM, Hofmann AW (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296: 821–825

    Google Scholar 

  • Woodhead J, Harmon RS, Fraser DG (1987) O-, S-, Sr-, and Pb-isotope studies of volcanic rocks from the Northern Mariana Islands: evidence for subducted sediments in the mantle source of island arcs. Earth Planet Sci Lett 83: 39–52

    Google Scholar 

  • Woodhead JD, Greenwood PB, Harmon RS, Devey C (1993) Stable isotope evidence for recycled crust in EM-type mantle reservoirs. Nature 362: 809–813

    Google Scholar 

  • Wörner G, Zindler A, Staudigel H, Schmincke H (1986) Sr, Nd, and Pb isotope geochemistry of Tertiary and Quaternary alkaline volcanics from West Germany. Contrib Mineral Petrol 79: 107–119

    Google Scholar 

  • Yeh H-W, Savin SM (1977) Mechanism of burial metamorphism of argillaceous sediments. 3. O-isotope evidence. Geol Soc Am Bull 88: 1321–1330

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14: 493–571

    Google Scholar 

  • Zindler A, Jagoutz E, Goldstein S (1982) Nd, Sr, and Pb isotopic systematics in a three-component mantle: a new perspective. Nature 298: 519–523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmon, R.S., Hoefs, J. Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contr. Mineral. and Petrol. 120, 95–114 (1995). https://doi.org/10.1007/BF00311010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311010

Keywords

Navigation