Skip to main content
Log in

The yeast protein Mrs6p, a homologue of the rabGDI and human choroideraemia proteins, affects cytoplasmic and mitochondrial functions

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

MRS6 is a newly-identified gene in the yeast Saccharomyces cerevisiae. Its product Mrs6p shows significant homology to the mammalian GDP dissociation inhibitor (GDI) of Rab/Ypt-type small G proteins and to the human choroideraemia protein (CHM), the component A of Rab-specific GGTase II. The interaction of Mrs6p with G proteins is indicated by our observation that the MRS6 gene suppresses the effect of a temperature-sensitive ypt1 mutation. Disruption of the MRS6 gene is lethal to haploid yeast cells. This is consistent with the notion that Mrs6p is interacting with Rab/Ypt-type small G proteins, which are known to have essential functions in vesicular transport. Unexpeciedly, the MRS6 gene product also affects mitochondrial functions as revealed by the facts that highcopy numbers of MRS6 (1) suppress the pet - phenotype of mrs2-1 mutant strains and (2) cause a weak pet - phenotype in wild-type strains. We conclude from these results that the MRS6 gene product has a vital function in connection with Rab/Ypt-type proteins in the cytoplasm and, in addition, affects mitochondrial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres DA, Seabra MS, Armstrong SA, Smeland TE, Cremers FPM, Goldstein JL (1993) Cell 73:1091–1099

    Google Scholar 

  • Araki S, Kaibuchi K, Sasaki T, Hata Y, Takai Y (1991) Mol Cell Biol 11:1438–1447

    Google Scholar 

  • Baker KP, Schatz G (1991) Nature 349:205–208

    Google Scholar 

  • Becker J, Tan TJ, Trepte HH, Gallwitz D (1991) EMBO J 10:785–792

    Google Scholar 

  • Boguski MS, McCormick F (1993) Nature 366:643–654

    Google Scholar 

  • Bussereau F, Dupont CH, Boy-Marcotte E, Maller L, Jacquet M (1992) Curr Genet 21:325–329

    Google Scholar 

  • Caplan AJ, Cyr DM, Douglas MG (1992) Cell 71:1143–1155

    Google Scholar 

  • Cox AD, Der CJ (1992) Curr Opin Cell Biol 4:1008–1016

    Google Scholar 

  • Dunn B, Stearns T, Botstein D (1993) Nature 362:563–565

    Google Scholar 

  • Fodor E, Lee RT, O'Donnel JJ (1991) Nature 351:614

    Google Scholar 

  • Fujimura K, Tanaka K, Nakano A, Toh-e A (1994) J Biol Chem 269:9205–9212

    Google Scholar 

  • Harshman KD, Moye-Rowley WS, Parker CS (1988) Cell 53: 321–330

    Google Scholar 

  • Jiang Y, Rossi G, Ferro-Novick S (1993) Nature 366:84–86

    Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Sato HT (1991) Annu Rev Biochem 60:349–400

    Google Scholar 

  • Li R, Havel C, Watson JA, Murray AW (1993) Nature 366:82–84

    Google Scholar 

  • Lithgow T, Timms M, Hoj PB, Hoogenraad NJ (1991) Biochem Biophys Res Commun 180:1453–1459

    Google Scholar 

  • Magee T, Newman C (1992) Trends Cell Biol 2:318–323

    Google Scholar 

  • Molenaar CMT, Prange R, Galwitz D (1988) EMBO J 7:971–976

    Google Scholar 

  • Musha T, Kawata M, Takai Y (1992) J Biol Chem 263:4509–4511

    Google Scholar 

  • Salminen A, Novick P (1987) Cell 49:527–538

    Google Scholar 

  • Sasaki T, Kaibuchi K, Kabcenell AK, Novick PJ, Takai Y (1991) Mol Cell Biol 11:2909–2912

    Google Scholar 

  • Schmitt HD, Wagner P, Pfaff E, Gallwitz D (1986) Cell 47:401–412

    Google Scholar 

  • Schmitt HD, Puzicha M, Gallwitz D (1988) Cell 53:635–647

    Google Scholar 

  • Schnell N, Krems B, Entian KH (1992) Curr Genet 21:269–273

    Google Scholar 

  • Seabra MC, Goldstein JL, Südhof TC, Brown MS (1992a) J Biol Chem 267:14497–14503

    Google Scholar 

  • Seabra MC, Brown MS, Slaughter CA, Südhof TC, Goldstein JL (1992b) Cell 70:1049–1057

    Google Scholar 

  • Segev Y, Mulholland J, Botstein D (1988) Cell 52:915–924

    Google Scholar 

  • Sztul ES, Melancon P, Howell KE (1992) Trends Cell Biol 2:381–386

    Google Scholar 

  • Takai Y, Kaibuchi K, Kikuchi A, Kawata M (1992) Int Rev Cyt 133:187–231

    Google Scholar 

  • Waldherr M, Ragnini A, Schweyen RJ, Boguski MS (1993a) Nature Genet 3:193–194

    Google Scholar 

  • Waldherr M, Ragnini A, Jank B, Teply R, Wiesenberger G, Schweyen RJ (1993b) Curr Genet 24:301–306

    Google Scholar 

  • Walworth C, Goud B, Kabcenell AK, Novick P (1989) EMBO J 8:1685–1693

    Google Scholar 

  • Wiesenberger G, Link TA, von Ahsen U, Waldherr M, Schweyen RJ (1990) J Mol Biol 217:23–37

    Google Scholar 

  • Wiesenberger G, Waldherr M, Schweyen RJ (1992) J Biol Chem 267:6963–6969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L.A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragnini, A., Teply, R., Waldherr, M. et al. The yeast protein Mrs6p, a homologue of the rabGDI and human choroideraemia proteins, affects cytoplasmic and mitochondrial functions. Curr Genet 26, 308–314 (1994). https://doi.org/10.1007/BF00310494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310494

Key words

Navigation