Skip to main content
Log in

The first appearance of the future cerebral hemispheres in the human embryo at stage 14

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Thirty-five embryos of stage 14 (32 days) were studied in detail and graphic reconstructions of four of them were prepared. Characteristic features of this stage include the beginning formation of the future cerebral hemispheres and the cerebellar plates.

The ventral boundary between telencephalon medium and diencephalon is the preoptic recess. Although a velum transversum is not yet distinguishable as a dorsal boundary, its site is indicated by a change in the thickness of the roof of the forebrain. As the cerebral vesicles (future hemispheres) begin to evaginate, a di-telencephalic sulcus and a corresponding lateral ventricle and ventricular ridge (torus hemisphericus) develop. The telencephalic wall is mainly ventricular layer but three areas show advanced differentiation: olfactory area, future amygdaloid body (which lies at first mainly in the diencephalon), and primordium of the hippocampus. The telencephalon is growing in length, and the forebrain now occupies almost one quarter of the total length of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Aff. :

Common afferent tract

A-H :

Adenohypophysial pouch

Amn :

Amnion

Amyg. :

Area of the future amygdaloid body

B.c. :

Boundary cap

B.v. :

Blood vessel

Cer. :

Cerebellum

Cer.v. :

Cerebral vesicle

Ch. :

Chiasmatic plate

Comm. :

Commissural plate

D-t S. :

Di-telencephalic sulcus

D :

Diencephalon

End. :

Endolymphatic duct

Hip. :

Hippocampus

Hyp. C. :

Hypothalamic cell cord

H-Th. :

Hypothalamothalamic tract

I :

Infundibulum

Int.st. :

Interstitial nucleus

L.L. :

Lateral longitudinal fasciculus

L.T. :

“Adult” lamina terminalis

M :

Mesencephalon

Ma. :

Mamillary area

Med.E. :

Medial eminence

MLF :

Medial longitudinal fasciculus

Nas. :

Nasal plate

N.Cr. :

Neural crest

Not. :

Notochord

Olf. :

Olfactory area

Olf.E. :

Olfactory eminence

Opt. :

Optic vesiole

Opt.G. :

Optic Groove

Opt.St. :

Optic stalk

Ot :

Otic vesicle

Pr.-H-T :

Preopticohypothalamotegmental tract

Rh. :

Rhombomere

S.L. :

Sulcus limitans

S. med. :

Sulcus medius

St. :

Stomach

Syn. :

Synencephalon

Tel.:

Telencephalon

Tel.m. :

Telencephalon medium

d.Th. :

Dorsal Thalamus

v.Th. :

ventral Thalamus

T.hem. :

Torus hemisphericus

Tr. :

Trachea

VLF :

Ventral longitudinal fasciculus

Vel. :

Velum transversum

References

  • Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48

    Google Scholar 

  • Altman J, Bayer SA (1979) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188:455–471

    Google Scholar 

  • Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231:1–26

    Google Scholar 

  • Bartelmez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Instn 37:13–32

    Google Scholar 

  • Bossy J (1980) Development of olfactory and related structures in staged human embryos. Anat Embryol 161:225–236

    Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: Revised terminlogy. Anat Rec 166:257–262

    Google Scholar 

  • Butler H, Juurlink BHJ (1987) An Atlas for Staging Mammalian and Chick Embryos. CRC, Boca Ratin, Florida

    Google Scholar 

  • Crosby CE, Humphrey T, Lauer EW (1962) Correlative Anatomy of the Nervous System. Macmillan, New York

    Google Scholar 

  • Gilbert MS (1935) The early development of the human diencephalon. J Comp Neurol 62:81–115

    Google Scholar 

  • Goodrum GR, Jacobson AG (1981) Cephalic flexure formation in the chick embryo. J Exp Zool 216:399–408

    Google Scholar 

  • Gribnau AAM, Geijsberts LGM (1985) Morphogenesis of the brain in staged rhesus monkey embryos. Adv Anat Embryol Cell Biol 91:1–69

    Google Scholar 

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate Untersuchungsergebnisse. Hirzel, Leipzig

    Google Scholar 

  • Hochstetter F (1929) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. II. Teil, 3. Lieferung. Die Entwicklung des Mittel- und Rautenhirns. Deuticke, Vienna

    Google Scholar 

  • Hochstetter F (1939) Über die Entwicklung und Differenzierung der Hüllen des menschlichen Gehirnes. Morphol Jahrb 83:359–494

    Google Scholar 

  • Humphrey T (1966) The development of the human hippocampal formation correlated with some aspects of its phylogenetic history. In: Hassler, Stephan (eds) Evolution of the Forebrain. Thieme, Stuttgart, pp 104–116

    Google Scholar 

  • Humphrey T (1968) The development of the human amygdala during early embryonic life. J Comp Neurol 132:135–165

    Google Scholar 

  • Ibrahim MZM (1985) The mast cells of the mammalian central nervous system. IX. Development of the mast cells in the brain of the young rat. Acta Anat 124:149–158

    Google Scholar 

  • Johnston IB (1909) The radix mesencephalica trigemini. J Comp Neurol 19:593–644

    Google Scholar 

  • Kappers JA (1955) The development of the paraphysis cerebri in man with comments on its relationship to the intercolumnar tubercle and its significance for the origin of cystic tumors in the third ventricle. J Comp Neurol 102:425–509

    Google Scholar 

  • Keibel F, Elze C (1908) Normentafeln zur Entwicklungsgeschichte der Wirbeltiere. 8. Heft: Normentafel zur Entwicklungsgeschichte des Menschen. Keibel (ed) Fischer, Jena

    Google Scholar 

  • Keyer A (1972) The development of the diencephalon of the Chinese hamster: An investigation of the validity of the criteria of subdivision of the brain. Acta Anat Suppl 59-1, 83:1–178

    Google Scholar 

  • Korneliussen HK (1968) On the ontogenetic development of the cerebellum (nuclei, fissure, and cortex) of the rat. with special references to regional variations in corticogenesis. J Hirnforsch 10:379–412

    Google Scholar 

  • Kuhlenbeck H (1977) Derivatives of the prosencephalon, diencephalon and telencephalon. In: The Central Nervous System of Vertebrates, vol 5, part 1. Karger, Basel, pp 1–888

    Google Scholar 

  • Lammers GJ (1976) On the development of the strio-amygdaloid complex in the Chinese hamster, Cricetulus griseus. Thesis, Nijmegen

  • Lammers GJ, Gribnau AAM, ten Donkelaar HJ (1980) Neurogenesis in the basal forebrain in the Chinese hamster (Cricetulus griseus). II. Site of neuron origin: Morphogenesis of the ventricular ridges. Anat Embryol 158:193–211

    Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica): A Golgi study. I. The primordial neocortical organization. Z Anat Entwickl-Gesch 134:117–145

    Google Scholar 

  • Marin-Padilla M (1979) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126

    Google Scholar 

  • Moody SA, Heaton MB (1983) Ultrastructural obsrvations of the migration and early development of trigeminal motoneurons in chick embryos. J Comp Neurol 216:20–35

    Google Scholar 

  • Müller F, O'Rahilly R (1986) The development of the human brain and the closure of the rostral neuropore at stage 11. Anat Embryol 175:205–222

    Google Scholar 

  • Müller F, O'Rahilly R (1987a) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176:413–430

    Google Scholar 

  • Müller F, O'Rahilly R (1987b) The development of the human brain from a closed neural tube at stage 13. Anat Embryol, in press

  • Narayanan CH, Narayanan Y (1978) Determination of the embryonic origin of the mesencephalic nucleus of the trigeminal nerve in birds. J Embryol Exp Morphol 43:85–105

    Google Scholar 

  • Nishimura H, Uwabe C, Shiota K (1987) Study of human postimplantation conceptuses, normal and abnormal. Okajimas Folia Anat jap 63:337–358

    Google Scholar 

  • Olson L, Seiger Å (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 137:301–316

    Google Scholar 

  • O'Rahilly R (1966) The carly development of the eye in staged human embryos. Contrib Embryol Carnegie Instn 38:1–42

    Google Scholar 

  • O'Rahilly R (1983) The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol 168:419–432

    Google Scholar 

  • O'Rahilly R, Müller F (1984) The early development of the hypoglossal nerve and occipital somites in staged human embryos. Am J Anat 169:237–257

    Google Scholar 

  • O'Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608

    Google Scholar 

  • O'Rahilly R, Müller F (1987) Developmental Stages in Human Embryos Including a Revision of Streeter's “Horizons” and a Survey of the Carnegie Collection. Carnegie Instn of Washington, Publication 637

  • O'Rahilly R, Müller F, Bossy J (1987) Atlas des stades du développement des formes extérieures de l'encéphale chez l'embryon humain. Arch Anat Histol Embryol, in press

  • O'Rahilly R, Müller F, Hutchins GM, Moore GW (1984) Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat 171:243–257

    Google Scholar 

  • Pearson AA, Sauter RW, Herrin GR (1964) The accessory nerve and its relation to the upper spinal nerves. Am J Anat 114:371–391

    Google Scholar 

  • Raedler A, Sievers J (1976) Light and electron microscopical studies on specific cells of the marginal zone in the developing rat cerebral cortex. Anat Embryol 149:173–181

    Google Scholar 

  • Raedler E, Raedler A, Feldhaus S (1980) Dynamical aspects of neocortical histogenesis in the rat. Anat Embryol 158:253–269

    Google Scholar 

  • Raedler E, Raedler A, Wegener G (1982) The median ventricular formation. A distinct structure at the mesencephalic apex. Anat Embryol 165:377–387

    Google Scholar 

  • Rakic P (1984) Organizing principles for development of primate cerebral cortex. In: S.C. Sharma (Ed), Organizing Principles of Neural Development. New York, Plenum Press, 21–48

    Google Scholar 

  • Rhines R, Windle FW (1941) The early development of the fasciculus longitudinalis medialis and associated secondary neurons in the rat, cat and man. J Comp Neurol 75:165–189

    Google Scholar 

  • Ross MD (1969) The general visceral efferent component of the eight cranial nerve. J Comp Neurol 135:453–477

    Google Scholar 

  • Streeter GL (1945) Developmental horizons in human embryos. Description of age group xiii, embryos about 4 or 5 millimeters long, and age group xiv, period of indentation of the lens vesicle. Contrib Embryol Carnegie Instn 31:27–63

    Google Scholar 

  • Tanaka O, Otani H, Fujimoto K (1987) Fourth ventricular floor in human embryos: scanning electron microscopic observations. Am J Anat 178:193–203

    Google Scholar 

  • Wilson DB, Hendrickx AG (1981) Incorporation of tritiated thymidine in the hypophysis of the rhesus monkey (Macaca mulatta) embryo. J Anat 132:19–28

    Google Scholar 

  • Wilson DB, Hendrickx AG (1986) Quantitative aspects of the cell cycle in the cranial neural tube of the rhesus monkey (Macaca mulatta) during early stages of gestation. J Craniofac Genet Biol 6:363–386

    Google Scholar 

  • Windle WF (1932) The neurofibrillar structure of the 7-mm cat embryo. J Comp Neurol 55:99–138

    Google Scholar 

  • Windle WF (1933) Neurofibrillar development in the central nervous system of cat embryos between 8 and 12 mm long. J Comp Neurol 58:643–723

    Google Scholar 

  • Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol (Suppl 5) 28:44–83

    Google Scholar 

  • Windle WF, Austin MF (1936) Neurofibrillar development in the central nervous system of chick embryos up to 5 days incubation. J Comp Neurol 63:431–463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by research grant No. HD-16702, Institute of Child Health and Human Development, National Institutes of Health (USA)

Numbers 5 to 12 cranial nerves. Where cranial nerves and rhombomeres are labelled in the same figure, the latter are in boldface numbers. The asterisk in Figs. 3 and 8 indicates the borderline between rhombencephalon and spinal cord

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, F., O'Rahilly, R. The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol 177, 495–511 (1988). https://doi.org/10.1007/BF00305137

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305137

Keywords

Navigation