Skip to main content
Log in

Funktion und Ultrastruktur des Nephridiums von Hirudo medicinalis

I. Ort und Mechanismus der Primärharnbildung

Function and fine structure of the nephridium of Hirudo medicinalis

I. Localization and mechanism of the formation of primary urine

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

Localization and mechanism of the formation of primary urine in Hirudo medicinalis were investigated with electronmicroscopic and physiological methods.

  1. 1.

    The flow of urine from the place of origin to the bladder was demonstrated by injecting coloured fluid into the canaliculi of the nephridium. The urine, coming from the canaliculi of the initial lobe and main lobe, enters the canaliculi of the inner lobe. From there it runs through the canaliculi of the apical lobe into the central canal and then into the bladder (Fig. 2). Primary urine is probably formed in the canaliculi of all lobes.

  2. 2.

    The cells of the different nephridial lobes have essentially the same fine structure (Figs. 3–6): they show basal infoldings, mitochondria, a high content of glycogen, and microvilli at the luminal surface. They differ in the depth of the infoldings, the closeness of microvilli and content of vesicles.

  3. 3.

    The capillaries of the nephridium are fenestrated. The fenestrations are closed by a diaphragm with a central knob (Fig. 4).

  4. 4.

    Inulin is not excreted by the nephridia.

  5. 5.

    Micropuncture and chemical microanalysis of the samples have been used to determine the osmolarity and chloride concentration of canaliculi urine (Fig. 7). The osmolarity is only slightly elevated in primary urine, chloride, however, is much more concentrated than in blood.

  6. 6.

    It is suggested that primary urine is formed in two steps (Fig. 8): I. Filtration through endothelial pores into the connective tissue; II. Secretion by nephridial cells into the canaliculi.

Zusammenfassung

Ort und Mechanismus der Primärharnbildung bei Hirudo medicinalis wurde mit elektronenmikroskopischen und physiologischen Methoden untersucht.

  1. 1.

    Injektionen von Farblösung in das Canaliculisystem der Nephridien demonstrierten den Verlauf des Harnflusses im Nephridium: der Harn fließt aus den Canaliculi des Anfangs- und des Hauptlappens in die Canaliculi des inneren Lappens und von hier nacheinander in die Canaliculi des apikalen Lappens, durch den Zentralkanal und in die Blase. Der Primärharn wird wahrscheinlich in die Canaliculi aller Lappen gebildet.

  2. 2.

    Die Zellen der Nephridiallappen haben prinzipiell die gleiche Feinstruktur: basale Einfaltungen, dazwischen und im intermediären Plasma Mitochondrien, einen hohen Glykogengehalt und apikale Mikrovilli.

  3. 3.

    Im Endothel der Blutkapillaren wurden Fenster gefunden, die von einem geknöpften Diaphragma überspannt werden.

  4. 4.

    Ins Blut injiziertes Inulin wird nicht durch die Nephridien ausgeschieden.

  5. 5.

    Durch Mikropunktion und chemische Analyse der Punktionsproben konnten die osmotische Konzentration und die Chloridkonzentration im Primärharn bestimmt werden. Während die Chloridkonzentration im Primärharn gegenüber Blut stark erhöht ist, liegt die Osmolarität des Primärharns nur wenig über der des Blutes.

  6. 6.

    Es wird die Arbeitshypothese entwickelt, daß sich die Primärharnbildung in zwei Stufen vollzieht: I. Filtration aus dem Blut in das Bindegewebe; II. Sekretion durch die Nephridialzellen in die Canaliculi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Altmann, Ph. L.: Blood and other body fluids. Biol. Handb., ed. by D. S. Dittmer. Fed. Am. Soc. Exp. Biol., Washington (1961).

  • Berridge, M. J.: Urine formation by the Malpighian tubules of Calliphora. I. Cations. J. exp. Biol. 48, 159–174 (1968).

    Google Scholar 

  • —: Urine formation by the Malpighian tubules of Calliphora. II. Anions. J. exp. Biol. 50, 15–28 (1969a).

    Google Scholar 

  • —: Oschman, J. L.: A structural basis for fluid secretion by Malpighian tubules. Tissue and Cell 1, 247–272 (1969b).

    Google Scholar 

  • Bhatia, M. L.: On the structure of the nephridia and funnels of the Indian leech Hirudinaria with remarks on these organs in Hirudo. Quart. J. micr. Sci. 81, 27–80 (1938).

    Google Scholar 

  • Boroffka, I.: Elektrolyttransport im Nephridium von Lumbricus terrestris. Z. vergl. Physiol. 51, 25–48 (1965).

    Google Scholar 

  • —: Osmo-und Volumenregulation bei Hirudo medicinalis. Z. vergl. Physiol. 57, 348–375 (1968).

    Google Scholar 

  • —, Hamp, R.: Topographie des Kreislaufsystems und Zirkulation bei Hirudo medicinalis. Z. Morph. Tiere 64, 59–76 (1969).

    Google Scholar 

  • Brimacombe, J. S., Webber, J. M.: Mucopolysaccharide, B. B. A. Library, vol. 6, Amsterdam-London-New York: Elsevier Publishing Comp. 1964.

    Google Scholar 

  • Diamond, J. M.: The mechanism of isotonic water transport. J. gen. Physiol. 48, 15–42 (1964).

    Google Scholar 

  • —, Bossert, W. H.: Standing —gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. gen. Physiol. 50, 2061–2083 (1967).

    Google Scholar 

  • Elfvin, L. G.: The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J. Ultrastruct. Res. 12, 687–704 (1965).

    Google Scholar 

  • Friederici, H. H. R.: On the diaphragm across fenestrae of capillary endothelium. J. Ultrastruct. Res. 27, 373–375 (1969).

    Google Scholar 

  • Goodrich, E. S.: The study of nephridia and genital ducts since 1895. Quart. J. micr. Sci. 86, 113–392 (1946).

    Google Scholar 

  • Grassé, P.: Traité de Zoologie, Tome V. Paris: Masson et Cie Éditeurs, Libraires de l'Académie Medicine 1959.

    Google Scholar 

  • Hammersen, F., Staudte, H. W.: Beiträge zum Feinbau der Blutgefäße von Invertebraten. I. Die Ultrastruktur des Sinus lateralis von Hirudo medicinalis. Z. Zellforsch. 100, 215–250 (1969).

    Google Scholar 

  • Kuffler, S. W., Potter, D. D.: Glia in the leech central nervous system. Physiological properties and neuron — glia relationship. J. Neurophysiol. 27, 290–320 (1964).

    Google Scholar 

  • Luft, J. H.: The ultrastructural basis of capillary permeability. In: The inflammatory process, ed. Zweifach, Grant, McCluskey. New York-London: Academic press 1965.

    Google Scholar 

  • Maddrell, S. H. P.: Secretion by the Malpighian tubules of Rhodnius prolixus. The movement of ions and water. J. exp. Biol. 51, 71–98 (1969).

    Google Scholar 

  • Maunsbach, A. B.: The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. J. Ultrastruct. Res. 15, 242–282 (1966a).

    Google Scholar 

  • —: The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. II. J. Ultrastruct. Res. 15, 283–309 (1966b).

    Google Scholar 

  • Nicholls, J. G., Kuffler, S. W.: Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons. J. Neurophysiol. 27, 645–671 (1964).

    Google Scholar 

  • —, Wolfe, D. E.: Distribution of 14C-labeled sucrose, inulin, and dextran in extracellular spaces and in cells of the leech central nervous system. J. Neurophysiol. 30, 1574–1592 (1967).

    Google Scholar 

  • Palade, G. E.: A study of fixation for electronmicroscopy. J. exp. Med. 95, 285–298 (1952).

    Google Scholar 

  • Ramsay, J. A.: The site of formation of hypotonic urine in the nephridium of Lumbricus terrestris. J. exp. Biol. 26, 65–75 (1949).

    Google Scholar 

  • —: Active transport of potassium by the Malpighian tubules of insects. J. exp. Biol. 30, 358–369 (1953).

    Google Scholar 

  • —: The excretion of sodium, potassium, and water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae). J. exp. Biol. 32, 200–216 (1955).

    Google Scholar 

  • —: Excretion by the Malpighian tubules of the stick insect, Dixippus morosus: calcium, magnesium, chloride, phosphate, and hydrogen ions. J. exp. Biol. 33, 697–708 (1956).

    Google Scholar 

  • —, Brown, R. H.: Simplified apparatus and procedure for freezing point determinations upon small volumes of fluid. J. Sci. Instrum. 32, 372–375 (1955).

    Google Scholar 

  • —, Croghan, P. C.: Electrometric titration of chloride in small volumes. J. exp. Biol. 32, 822–829 (1955).

    Google Scholar 

  • Rhodin, J.: The diaphragm of capillary endothelial fenestrations. J. Ultrastruct. Res. 6, 171–185 (1962).

    Google Scholar 

  • Roche, J.: Electron microscope studies on high molecular weight erythrocruorins (invertebrate haemoglobins) and chlorocruorins of annelids. In: Studies in comparative biochemistry. Int. Ser. Monogr. Pure Appl. Biol., Div. Zool., ed. K. A. Munday, Oxford: Pergamon Press 1965.

    Google Scholar 

  • Rosenbluth, J.: Contrast between osmium fixed and permanganate fixed toad spinal ganglia. J. Cell Biol. 16, 143–157 (1963).

    Google Scholar 

  • Sabatini, D. D., Bentsch, K. G., Barrnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Scriban, I. A., Autrum, H. J.: Hirudinea = Egel. In: W. Kükenthal, Handbuch der Zoologie, Bd. 2, II, S. 118–352. Berlin u. Leipzig: W. de Gruyter & Co. 1934.

    Google Scholar 

  • Sjöstrand, F. S.: Electron microscopy of cells and tissues. I. New York-London: Academic Press 1967.

    Google Scholar 

  • Strunk, C.: Beiträge zur Exkretionsphysiologie der Polychaeten Arenicola marina und Stylarioides plumosus. Zool. Jb., Abt. allg. Zool. u. Physiol. 47, 259–290 (1930).

    Google Scholar 

  • Wigglesworth, V. B.: The regulation of osmotic pressure and chloride concentration in the hemolymphe of mosquito larvae. J. exp. Biol. 15, 235–247 (1938).

    Google Scholar 

  • Wolff, J.: Elektronenmikroskopische Untersuchungen über die Vesikulation im Kapillarendothel. Lokalisation, Variation und Fusion der Vesikel. Z. Zellforsch. 73, 143–164 (1966).

    Google Scholar 

  • —, Merker, H. J.: Ultrastruktur und Bildung von Poren im Endothel von porösen und geschlossenen Kapillaren. Z. Zellforsch. 73, 174–191 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boroffka, I., Altner, H. & Haupt, J. Funktion und Ultrastruktur des Nephridiums von Hirudo medicinalis . Z. Vergl. Physiol. 66, 421–438 (1970). https://doi.org/10.1007/BF00299940

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00299940

Navigation