Skip to main content
Log in

Fonctions proprioceptives au niveau de la région basi-ischio-méropodite chez Astacus leptodactylus

Proprioception by the basi-ischio-meropodite region of Astacus leptodactylus

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    Afferent impulses have been recorded from the isolated sensory nerves of the main proprioceptors of the basi-ischio-meropodite region in the walking leg of the crayfish Astacus leptodactylus.

  1. a)

    The myochordotonal organ (MCO) contains chiefly fibres which are sensitive to the extension of the carpopodite (Fig. 1). Recordings were made from separated portions of the whole MCO sensory nerve in order to distinguish among the different types of fibres (Fig. 2). The roles of the two accessory flexor muscular groups and accessory nervous cells are discussed.

  2. b)

    The two IM chordotonal organs differ functionally. IM1 shows a maximal discharge during production of the meropodite whereas during reduction no activity is present (Figs. 3 and 4). IM2 is less significant but seems more active during the reduction.

  3. c)

    BI, associated with the basipodite muscle, is similar functionally to IM1 (Fig. 6).

  4. 2.

    Records of motor nerves of the meropodite and ischiopodite confirm that these proprioceptors elicits “resistance reflexes” (Figs. 7–9).

  5. 3.

    Using the conclusions of previous studies a classification of different walking leg proprioceptors is suggested. The role of the M-C joint with its different inputs, in crayfish and crab, is discussed.

Résumé

  1. 1.

    L'activité des principaux propriocepteurs de la région appendiculaire basi-ischio-méropodite de l'écrevisse Astacus leptodactylus a été étudié électrophysiologiquement.

  1. a)

    L'organe myochordotonal MCO possède, principalement, des fibres sensibles à l'extension du carpopodite (Fig. 1). Des rameaux séparés de l'afférence ont permis de distinguer différents types unitaires (Fig. 2). Le rôle des deux groupes musculaires du fléchisseur accessoire et des cellules annexes est discuté.

  2. b)

    La décharge des deux récepteurs de l'ischiopodite diffère: IM1 se comporte comme uniquement sensible à la projection vers l'avant du méropodite, un retour en arrière le réduit au silence (Figs. 3 et 4); IM2 présente des résultats moins significatifs mais semble préférentiellement indiquer la ≪réduction≫ du méropodite (Fig. 5).

  3. c)

    BI, propriocepteur associé au muscle du basipodite, s'apparente fonctionellement à IM1 (Fig. 6).

  4. 2.

    L'enregistrement des nerfs moteurs du méro et de l'ischiopodite confirme le rôle de ces récepteurs en tant qu'initiateur de ≪réflexes de résistance≫ (Figs. 7–9).

  5. 3.

    A l'aide des travaux antérieurs, une tentative de classification des différents types de propriocepteurs appendiculaires, suivant les mouvements qui les mettent en jeu, est présentée. Le fonctionnement de l'armature sensorielle de l'articulation M-C de l'écrevisse et du crabe est discutée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  • Barth, F. G.: A phasic-tonic proprioceptor in the telson of the crayfish Procambarus clarkii. Z. vergl. Physiol. 48, 181–189 (1964).

    Google Scholar 

  • Barth, G.: Untersuchungen über myochordotonale Organe bei dekapoden Crustaceen. Z. wiss. Zool. 145, 576–624 (1934).

    Google Scholar 

  • Boettiger, E. G., Hartman, H. B.: Excitation of the receptor cells of the Crustacean PD organ. Symposium on Neurobiology of Invertebrates, 381–390 (1968).

  • Burke, W.: An organ of proprioception and vibration sense in Carcinus maenas (L.) J. exp. Biol. 31, 89–105 (1954).

    Google Scholar 

  • Bush, B. M. H.: Proprioceptive reflexes in the legs of Carcinus maenas. J. exp. Biol. 39, 89–105 (1962).

    Google Scholar 

  • —: A comparative study of certain limb reflexes in decapod crustaceans. Comp. Biochem. Physiol. 10, 273–290 (1963).

    Google Scholar 

  • —: Proprioception by chordotonal organs in the mero carpopodite and carpopodite joints of Carcinus maenas legs. Comp. Biochem. Physiol. 14, 185–189 (1965a).

    Google Scholar 

  • —: Proprioception by the coxobasal chordotonal organ, CB in legs of the crab Carcinus maenas. J. exp. Biol. 42, 285–297 (1965b).

    Google Scholar 

  • —: Leg reflexes from chordotonal organs in the crab Carcinus maenas. Comp. Biochem. Physiol. 15, 567–587 (1965c).

    Google Scholar 

  • —: Resistance reflexes from a crab muscle receptor without impulses. Nature (Lond.) 218, 1171–1173 (1968).

    Google Scholar 

  • Clarac, F.: Proprioception by the ischio-meropodite region in legs of the crab Carcinus mediterraneus C. Z. vergl. Physiol. 61, 224–245 (1968).

    Google Scholar 

  • —, Masson, C.: Anatomie comparée des propriocepteurs de la région basi-ischioméropodite chez certains crustacés décapodes. Z. vergl. Physiol. 65, 242–273 (1969).

    Google Scholar 

  • Cohen, M. J. V.: The crustacean myochordotonal organ as a proprioceptive system. Comp. Biochem. Physiol. 8, 223–243 (1963).

    Google Scholar 

  • —: The dual role of sensory system: detection and setting control excitability. Cold. Spr. Harb. Symp. quant. Biol. 30, 587–599 (1965).

    Google Scholar 

  • Evoy, W. H., Cohen, M. J.: Sensory and motor interaction in the locomotor reflexes of crabs. J. exp. Biol. 51, 151–169 (1969).

    Google Scholar 

  • Harreveld, A. van: Physiological solution from freshwater crustacean. Proc. Soc. exp. Biol. (N. Y.) 34, 428–432 (1936).

    Google Scholar 

  • Hartman, H. B., Boettiger, E. G.: The functional organization of the propus dactylus organ in Cancer irroratus. Comp. Biochem. Physiol. 22, 651–663 (1967).

    Google Scholar 

  • Laverack, M. S., Dando, M. R.: The anatomy and physiology of mouth part receptors in the lobster Homarus vulgaris. Z. vergl. Physiol. 61, 176–195 (1968).

    Google Scholar 

  • Mendelson, M.: Some factors in the activation of crab movement receptors. J. exp. Biol. 40, 157–169 (1963).

    Google Scholar 

  • Ripley, S. H., Bush, B. M. H., Roberts, A.: Crab muscle receptor which responds without impulses. Nature (Lond.) 218, 1170–1171 (1968).

    Google Scholar 

  • Taylor, R. C.: The anatomy and adequate stimulation of a chordotonal organ in the antennae of a hermit crab. Comp. Biochem. Physiol. 20, 709–719 (1967).

    Google Scholar 

  • Wales, W., Clarac, F., Dando, M. R., Laverack, M. S.: Innervation of the receptors present at the various joints of the pereiopods and third maxilliped of Homarus gammarus (L.) and other macruran decapods Crustacea. (En préparation.)

  • Wiersma, C. A. G.: Movement receptors in decapod Crustacea. J. Mar. Biol. Ass. U. K. 38, 143–152 (1959).

    Google Scholar 

  • —, Boettiger, E.: Undirectional movement fibres from a proprioceptive organ of the crab, Carcinus maenas. J. exp. Biol. 36, 102–112 (1959).

    Google Scholar 

  • —, Ripley, S. H.: Innervation patterns of Crustacean limbs. Physiol. comp. ('s-Grav.) 2, 391–405 (1952).

    Google Scholar 

  • Whitear, M.: The fine structure of crustacean proprioceptors I. The chordotonal organs in the legs of the shore crab Carcinus maenas. Phil. Trans. B 245, 291–325 (1962).

    Google Scholar 

  • Wyse, G. A., Maynard, D. M.: Joint receptors in the antennule of Panulirus argus Latreille. J. exp. Biol. 42, 521–535 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nous tenons à remercier Monsieur le Professeur M. S. Laverack qui a bien voulu lire et discuter mon manuscrit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarac, F. Fonctions proprioceptives au niveau de la région basi-ischio-méropodite chez Astacus leptodactylus . Z. Vergl. Physiol. 68, 1–24 (1970). https://doi.org/10.1007/BF00297808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297808

Navigation