Skip to main content
Log in

Cloning, sequencing and characterization of the Saccharomyces cerevisiae URA7 gene encoding CTP synthetase

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The URA7 gene of Saccharomyces cerevisiae encodes CTP synthetase (EC 6.3.4.2) which catalyses the conversion of uridine 5′-triphosphate to cytidine 5′-triphosphate, the last step of the pyrimidine biosynthetic pathway. We have cloned and sequenced the URA 7 gene. The coding region is 1710 by long and the deduced protein sequence shows a strong degree of homology with bacterial and human CTP synthetases. Gene disruption shows that URA7 is not an essential gene: the level of the intracellular CTP pool is roughly the same in the deleted and the wild-type strains, suggesting that an alternative pathway for CTP synthesis exists in yeast. This could involve either a divergent duplicated gene or a different route beginning with the amination of uridine mono- or diphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amuro N, Paluh JL, Zalkin H (1985) Replacement by site-directed mutagenesis indicates a role for histidine 170 in the glutamine amide transfer function of anthranilate synthase. J Biol Chem 260:14844–14849

    Google Scholar 

  • Basson ME, Moore RL, O'Rear J, Rine J (1987) Identifying mutations in duplicated functions in Saccharomyces cerevisiae: recessive mutations in HMG-CoA reductase genes. Genetics 117:645–655

    Google Scholar 

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNA3 by gel electrophoresis of S1 endonuclease digested hybrids. Cell 12:721–732

    Google Scholar 

  • Birnboim HC, Doty J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li G, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicatine, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of μg quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Cherest H, Surdin-Kerjan Y, Exinger F, Lacroute F (1978) S-Adenosyl methionine requiring mutants in Saccharomyces cerevisiae: Evidence for the existence of two methionine adenosyl transferases. Mol Gen Genet 163:153–167

    Google Scholar 

  • Chevallier MR, Bloch J-C, Lacroute F (1980) Transcriptional and translational expression of a chimeric bacterial-yeast plasmid in yeast. Gene 11:11–19

    Google Scholar 

  • de Montigny J, Belarbi A, Hubert J-C, Lacroute F (1989) Structure and expression of the URA5 gene of Saccharomyces cerevisiae. Mol Gen Genet 215:455–462

    Google Scholar 

  • de Montigny J, Kern L, Hubert J, Lacroute F (1990) Cloning and sequencing of URAJO, a second gene encoding orotate phosphoribosyl transferase in Saccharomyces cerevisiae. Curr Genet 17:105–111

    Google Scholar 

  • Elledge SJ, Davis RW (1990) Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 4:740–751

    Google Scholar 

  • Freeze E, Olempska-Beer Z, Eisenberg M (1984) Nucleotide composition of cell extracts analysed by full-spectrum recording in high-performance liquid chromatography. J Chromatogr 284:125–142

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244

    Google Scholar 

  • Hinnen A., Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hoffman NE, Liao JC (1977) Reversed phase high performance liquid chromatographic separations of nucleotides in the presence of solvophobic ions. Anal Chem 49:2231–2234

    Google Scholar 

  • Jund R, Lacroute F (1970) Genetic and physiological aspects of resistance to 5-fluoropyrimidines in Saccharomyces cerevisiae. J Bacteriol 102:607–615

    Google Scholar 

  • Kaplan JC, Merkel WK, Nichols BP (1985) Evolution of glutamine amidotransferase genes. Nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. J Mol Biol 183:327–340

    Google Scholar 

  • Kelsall A, Meuth M (1988) Direct selection of Chinese hamster ovary strains deficient in CTP synthetase activity. Somat Cell Mot Genet 14:149–154

    Google Scholar 

  • Lepesant-Kejzlarova J, Lepesant J-A, Walle J, Billault A, Dedonder R (1975) Revision of the linkage map of Bacillus subtilis 168: Indications for circularity of the chromosome. J Biol Chem 259:2355–2359

    Google Scholar 

  • Liberman I (1956) Enzymatic amination of uridine triphosphate to cytidine triphosphate. J Biol Chem 222:765–775

    Google Scholar 

  • Liljelund P, Lacroute F (1986) Genetic characterization and isolation of the Saccharomyces cerevisiae gene coding for uridine monophosphokinase. Mol Gen Genet 205:74–81

    Google Scholar 

  • Liljelund P, Sanni A, Friesen JD, Lacroute F (1989) Primary structure of the S. cerevisiae gene encoding uridine monophosphokinase. Biochem Biophys Res Commun 165:464–473

    Google Scholar 

  • Linder P, Slonimski PP (1989) An essential yeast protein, encoded by duplicated genes TIFJ and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc Natl Acad Sci USA 86:2286–2290

    Google Scholar 

  • Mark C (1988) “DNA strider”: a “C” program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836

    Google Scholar 

  • McPartland RP, Weinfeld H (1979) Cooperative effects of CTP on calf liver CTP synthetase. J Biol Chem 4:1792–1799

    Google Scholar 

  • Meuth M (1989) The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells. Exp Cell Res 181:305–316

    Google Scholar 

  • Montgomery DL, Leung DW, Smith M, Shalit P, Faye G, Hall BD (1980) Isolation and sequence of the gene for iso-2-cytochrome c in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 77:541–545

    Google Scholar 

  • Mortimer RK, Hawthorne DC (1966) Genetic mapping in Saccharomyces cerevisiae. Genetics 53:165–173

    Google Scholar 

  • Neuhard J (1983) Utilization of preformed pyrimidine bases and nucleotides. In: Munch-Petersen A (ed) Metabolism of nucleotides, nucleosides and nucleobases in microorganisms. Academic Press, London, pp 95–148

    Google Scholar 

  • Nichols BP, Miozzari GF, van Cleemput M, Bennett GN, Yanofsky C (1980) Nucleotide sequences of the trpG regions of Escherichia, Shigella dysenteriae, Salmonella typhimurium and Serratia marcescens. J Mol Biol 142:503–517

    Google Scholar 

  • Olempska-Beer Z, Bautz Freeze E (1984) Optimal extraction conditions for high-performance liquid chromatographic determination of nucleotides in yeast. Anal Biochem 140:236–245

    Google Scholar 

  • Orlean P (1987) Two chitin synthases in Saccharomyces cerevisiae. J Biol Chem 262:5732–5739

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein R (1983) Genetic application of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245

    Google Scholar 

  • Paluh JL, Zalkin H, Betsch D, Weith HL (1985) Study of anthranilate synthase function by replacement of cysteine 84 using sitedirected mutagenesis. J Biol Chem 260:1889–1894

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Perret D (1987) Nucleotides, nucleosides and bases. In: Lim CK (ed) Hplc of small molecules, a practical approach. IRL Press, Oxford Washington DC, pp 221–259

    Google Scholar 

  • Pierard A, Glansdoff N, Gigot D, Crabeel M, Halleux P, Thiry L (1976) Repression of Escherichia coli carbamoylphosphate synthetase: relationships with enzyme synthesis in the arginine and pyrimidine pathways. J Bacteriol 127:291–301

    Google Scholar 

  • Piette J, Nyunoya C, Lusty CJ, Cunin R, Weyens G, Crabeel M, Charlier D, Glansdorff N, Piérard A (1984) DNA sequence of the carA gene and the control region of carAB. Tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proc Natl Acad Sci USA 81:4134–4138

    Google Scholar 

  • Randerath K, Randerath E (1967) Thin-layer separation methods for nucleic acid derivatives. Methods Enzymol 12:323–347

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Sci SA 74:5463–5467

    Google Scholar 

  • Sharp PM, Li WH (1987) The codon adaptation index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Souciet JL, Potier S, Hubert JC, Lacroute F (1987) Nucleotide sequence of the pyrimidine specific carbamoylphosphate syn thetase, a part of the yeast multifunctional protein encoded by the URA2 gene. Mol Gene Genet 207:314–319

    Google Scholar 

  • Trach K, Chapman JW, Piggot P, Lecoq D, Hoch JA (1988) Complete sequence and transcriptional analysis of the spoOF region of the Bacillus subtilis chromosome. J Bacteriol 170:4194–4208

    Google Scholar 

  • Waleh NS, Ingraham JL (1976) Pyrimidine ribonucleoside monophosphokinase and the mode of RNA turnover in Bacillus subtilis. Arch Microbiol 110:49–54

    Google Scholar 

  • Weng M, Makaroff CA, Zalkin H (1986) Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. J Biol Chem 261:5568–5574

    Google Scholar 

  • Williams JC, Kizaki H, Weiss E, Weber G (1978) Improved radioisotopic assay for cytidine 5′-triphosphate synthetase (EC 6.3.4.2). Anal Biochem 91:46–59

    Google Scholar 

  • Yamauchi M, Yamauchi N, Meuth M (1990) Molecular cloning of the CTP synthetase gene by functional complementation with purified human metaphase chromosomes. EMBO J 9:2095–2099

    Google Scholar 

  • Yanisch-Perron C, Viera J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the Ml3mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Zalkin H, Argos P, Narayana SVL, Tiedeman AA, Smith JM (1985) Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase. J Biol Chem 260:3350–3354

    Google Scholar 

  • Zaret SK, Sherman F (1982) DNA sequence required for efficient transcription termination in yeast. Cell 28:563

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozier-Kalogeropoulos, O., Fasiolo, F., Adeline, MT. et al. Cloning, sequencing and characterization of the Saccharomyces cerevisiae URA7 gene encoding CTP synthetase. Molec. Gen. Genet. 231, 7–16 (1991). https://doi.org/10.1007/BF00293815

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00293815

Key words

Navigation