Skip to main content
Log in

Assignment of the human tyrosine aminotransferase gene to chromosome 16

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The liver enzyme tyrosine aminotransferase (TAT; EC 2.6.1.5) catalyzes the rate-limiting step in the catabolic pathway of tyrosine. Deficiency in TAT enzyme activity underlies the autosomally inherited disorder tyrosinemia II (Richner-Hanhart syndrome). Using a human TAT cDNA clone as hybridization probe, we have determined the chromosomal location of the TAT structural gene by Southern blot analysis of DNAs from a series of human x rodent somatic cell hybrids. The results assign the TAT gene to human chromosome 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson SM, Pispa JP (1982) Purification and properties of human liver tyrosine aminotransferase. Clin Chim Acta 125:117–123

    Google Scholar 

  • Buist NRM, Kennaway NG, Fellmann JH (1985) Tyrosinemia type II: hepatic cytosol tyrosine aminotransferase deficiency (the “Richner-Hanhart syndrome”). In: Bickel H, Wachtel U (eds) Inherited diseases of amino acid metabolism. Thieme, Stuttgart New York, pp 203–235

    Google Scholar 

  • Chandra T, Stackhouse R, Kidd VJ, Woo SLC (1983) Isolation and sequence characterization of a cDNA clone of human antithrombin III. Proc Natl Acad Sci USA 80:1845–1848

    Google Scholar 

  • Cheung P, Kao FT, Law ML, Jones C, Puck TT, Chan L (1984) Localization of the structural gene for human apolipoprotein A-I on the long arm of human chromosome 11. Proc Natl Acad Sci USA 81:508–511

    Google Scholar 

  • Cox DR, Gedde-Dahl T Jr (1985) Report of the committee on the genetic constitution of chromosomes 13, 14, 15 and 16., In: Human Gene Mapping 8. Cytogenet Cell Genet 40:206–241

    Google Scholar 

  • Glücksohn-Waelsch S (1979) Genetic control of morphogenetic and biochemical differentiation: lethal albino deletions in the mouse. Cell 16:225–237

    Google Scholar 

  • Goldsmith LA (1983) Tyrosinemia and related disorders. In: Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 287–299

    Google Scholar 

  • Granner DK, Hargrove JL (1983) Regulation of the synthesis of tyrosine aminotransferase: the relationship to mRNATAT. Mol Cell Biochem 53/54:113–128

    Google Scholar 

  • Greengard O (1970) The developmental formation of enzymes in rat liver. In: Litwack G (ed) Biochemical actions of hormones, vol 1. Academic Press, New York London, pp 53–87

    Google Scholar 

  • Inui K, Kao FT, Fujibavashi S, Jones C, Morse HG, Law ML, Wenger DA (1985) The gene coding for a sphingolipid activator protein, SAP-1, is on human chromosome 10. Hum Genet 69: 197–200

    Google Scholar 

  • Kao FT, Morse HG, Law ML, Lidsky A, Chandra T, Woo SLC (1984) Genetic mapping of the structural gene for antithrombin III to human chromosome 1. Human Genet 67:34–36

    Google Scholar 

  • Labarca C, Paigen K (1980) A simple, rapid and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Google Scholar 

  • Lalley PA, McKusick VA, (1985) Report of the committee on comparative mapping. In. Human Gene Mapping 8. Cytogenet Cell Genet 40:536–566

  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12:7035–7056

    Google Scholar 

  • Morse HG, Patterson D, Jones C (1982) Giemsa-11 technique: applications in basic research. Mammalian Chromosome Newslett 23:127–133

    Google Scholar 

  • Müller G, Scherer G, Zentgraf H, Ruppert S, Herrmann B, Lehrach H, Schütz G (1985) Isolation, characterization and chromosomal mapping of the mouse tyrosine aminotransferase gene. J Mol Biol 184:367–373

    Google Scholar 

  • Ohisalo JJ, Laskowska-Klita T, Andersson SM (1982) Development of tyrosine aminotransferase and p-hydroxyphenylpyruvate dioxygenase activities in fetal and neonatal human liver. J Clin Invest 70:198–200

    Google Scholar 

  • Räihä NCR, Schwartz A (1973) Enzyme induction in human fetal liver in organ culture. Enzyme 15:330–339

    Google Scholar 

  • Scherer G, Schmid W, Strange CM, Röwekamp W, Schütz G (1982) Isolation of cDNA clones coding for rat tyrosine aminotransferase. Proc Natl Acad Sci USA 79:7205–7208

    Google Scholar 

  • Shinomiya T, Scherer G, Schmid W, Zentgraf H, Schütz G (1984) Isolation and characterization of the rat tyrosine aminotransferase gene. Proc Natl Acad Sci USA 81:1346–1350

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natt, E., Kao, FT., Rettenmeier, R. et al. Assignment of the human tyrosine aminotransferase gene to chromosome 16. Hum Genet 72, 225–228 (1986). https://doi.org/10.1007/BF00291882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00291882

Keywords

Navigation