Skip to main content
Log in

Inhibition of HTLV-I induction and virus-induced syncytia formation by oligodeoxynucleotides

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

HTLV-I is an exogenous human retrovirus that is a causative agent of adult T cell leukemia (ATL). In addition to the structural genes (gag, pol and env), a gene termed pX is postulated to be associated with leukemogenesis in ATL. Since no effective chemotherapy is currently available, it is important to find suitable therapeutic means against ATL. Here, we tested the inhibitory effect of antisense oligodeoxynucleotides (ODNs) on HTLV-I infection in different systems. ODNs were synthesized with the phosphorothioate backbone targeted to either structural genes or transactivator genes. The phosphorothioate ODNs were found to have two distinct target sites to exert their effect on HTLV-I infection: 1) Several ODNs, including sense ODNs and random oligomers, blocked syncytium formation induced by HTLV-I at a concentration of 0.1 μM. Their inhibitory effect on syncytium formation seemed to be exerted in a nonantisense manner, most probably due to their interaction with the cell membrane. 2) Efficient suppression by ODNs of gag gene expression after chemical induction was observed in HTLV-I-transformed T cells in an antisense manner. In this suppression, tax-antisense ODN showed virtually complete inhibition of gag protein expression, but not RNA expression, at the concentration of 0.1 μM, whereas tax-sense ODN displayed a weak inhibitory effect. Our results suggest that the influence of the phosphorothioate compound should be considered from the aspect of two separated mechanisms of antiviral activity, the effects on early (viral adsorption) and late (translation) phase infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poiesz B.J., Ruscetti F.W., Gazdar A.F., Bunn P.A., Minna J.D., and Gallo R.C., Proc Natl Acad Sci USA 77, 7415–7419, 1980.

    Google Scholar 

  2. Hinuma Y., Nagata K., Hanaoka M., Nakai M., Matsumoto T., Kinoshita K., Shirakawa S., and Miyoshi I., Proc Natl Acad Sci USA 78, 6476–6480, 1981.

    Google Scholar 

  3. Yoshida M., Miyoshi I., and Hinuma Y., Proc Natl Acad Sci USA 79, 2031–2035, 1982.

    Google Scholar 

  4. Gessain A., Barin F., Vernant J.C., Gout O., Maurs L., and Calender A., Lancet 2, 407–410, 1985.

    Google Scholar 

  5. Osame M., Matsumoto M., Usuku K., Izumo S., Ijichi N., Amitani H., Tara M., and Igata A., Ann Neurol 21, 117–122, 1987.

    Google Scholar 

  6. Manns A. and Blattner W., Transfusion 31, 67–75, 1991.

    Google Scholar 

  7. Levine P.H., Jaffe E.S., Manns A., Murphy E.L., Clark J., and Blattner W.A., J Biol Med 61, 215–222, 1988.

    Google Scholar 

  8. Levine P.H., Blattner W.A., Clark J., Tarone R., Maloney E.M., Murphy E.M., Gallo R.C., Robert-Guroff M., and Saxinger W.C., Int J Cancer 42, 7–12, 1988.

    Google Scholar 

  9. Gallo R.C., Sci Am 255, 88–98, 1986.

    Google Scholar 

  10. Seiki M., Hattori S., Hirayama Y., and Yoshida M., Proc Natl Acad Sci USA 80, 3618–3622, 1983.

    Google Scholar 

  11. Yoshida M., Biochim Biophys Acta 907, 145–161, 1987.

    Google Scholar 

  12. Tanaka Y., Koyanagi Y., Chosa T., Yamamoto N., and Hinuma Y., Gann 74, 327–330, 1983.

    Google Scholar 

  13. Zack J.A., Arrigo S.J., Weitsman S.R., Go A.S., Haislip A., and Chen I.S., Cell 61, 213–222, 1990.

    Google Scholar 

  14. Kitajima I., Shinohara T., Minor T., Bibbs L., Bilakovics J., and Nerenberg M., J Biol Chem 267, 25881–25888, 1992.

    Google Scholar 

  15. Fujita M., Murata K., and Shiku H., Blood 84, 2591–2596, 1994.

    Google Scholar 

  16. Bridges S.H. and Sarver N., Lancet 345, 427–432, 1995.

    Google Scholar 

  17. Furuta R.A., Kubota S., Maki Y., Hattori T., and Hatanaka M., J Virol 69, 1591–1599, 1995.

    Google Scholar 

  18. Shibahara S., Mukai S., Morisawa H., Nakashima H., Kobayashi S., and Yamamoto N., Nucleic Acids Res 17, 239–252, 1989.

    Google Scholar 

  19. Miller P.S., McParland K.B., Jayaraman K., and Ts'o P.O., Biochemistry 20, 1874–1880, 1981.

    Google Scholar 

  20. Matsukura M., Shinozuka K., Zon G., Mitsuya H., Reitz M., Cohen J.S., and Broder S., Proc Natl Acad Sci USA 84, 7706–7710, 1987.

    Google Scholar 

  21. Agrawal S, Ikeuchi T., Sun D., Sarin P.S., Konopka A., Maize J., and Zamecnik P.C., Proc Natl Acad Sci USA 86, 7790–7794, 1989.

    Google Scholar 

  22. Nakashima H., Shoji Y., Kim S.G., Shimada J., Mizushima Y., Ito M., Yamamoto N., and Takaku H., Nucleic Acids Res 22, 5004–5010, 1994.

    Google Scholar 

  23. Nagy K., Clapham P., Cheingsong-Popov R., and Weiss R.A., Int J Cancer 32, 321–328, 1983.

    Google Scholar 

  24. Hoshino H., Shimoyama M., Miwa M., and Sugimura T., Proc Natl Acad Sci USA 80, 7337–7341, 1983.

    Google Scholar 

  25. Hayami M., Tsujimoto H., Komuro A., Hinuma Y., and Fujiwara K., Gann 75, 99–102, 1984.

    Google Scholar 

  26. Clapham P., Nagy K., Cheingsong-Popov R., Exley M., and Weiss R.A., Science 222, 1125–1127, 1983.

    Google Scholar 

  27. Hoxie J.A., Matthews D.M., and Clines D.B., Proc Natl Acad Sci USA 81, 7591–7595, 1984.

    Google Scholar 

  28. Miyoshi I., Yoshimoto I., Kubonishi H., Taguchi Y., Shiraishi Y., Ohtsuki Y., and Akagi T., Gann 72, 997–998, 1981.

    Google Scholar 

  29. Yamamoto N., Okada M., Koyanagi Y., Kannagi M., and Hinuma Y., Science 217, 737–739, 1982.

    Google Scholar 

  30. Popovic M., Lange-Wantzin G., Sarin P.S., Mann D., and Gallo R.C., Proc Natl Acad Sci USA 80, 5402–5406, 1983.

    Google Scholar 

  31. Okochi K., Sato H., and Hinuma Y., Vox Sang 46, 245–253, 1984.

    Google Scholar 

  32. Kim S.G., Suzuki Y., Nakashima H., Yamamoto N., and Takaku H., Biochem Biophys Res Commun 179, 1614–1619, 1991.

    Google Scholar 

  33. Stec W.J., Grajkowski A., Koziolkiewiez M., and Uznanski B., Nucleic Acids Res 19, 5883–5888, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyano-Kurosaki, N., Koyanagi, Y., Mizuguchi, M. et al. Inhibition of HTLV-I induction and virus-induced syncytia formation by oligodeoxynucleotides. Virus Genes 12, 205–217 (1996). https://doi.org/10.1007/BF00284641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284641

Key words

Navigation