Skip to main content
Log in

Allele-specific DNA identity patterns

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

A method of genetic analysis is presented which involves digestion of DNA with a single restriction enzyme (PvuII) and hybridisation with a mixture of five probes. Four of the five probes chosen recognise hypervariable regions (HVRs) of the human genome and hence an allele-specific DNA identity pattern results. An advantage of this approach to genetic characterisation is that the complex identity patterns may be broken down into simple allelic systems of known chromosomal localization by hybridisation with the individual probes. Also different probes may be included in a combined probe designed for particular types of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell JI, Estess P, St John T, Saiki R, Watling DL, Erlich HA, McDevitt HO (1985) DNA sequence and characterisation of human class II major histocompatibility complex β chains from the DR1 haplotype. Proc Natl Acad Sci USA 82:3405–3409

    Google Scholar 

  • Cooper DN, Schmidtke J (1984) DNA restriction fragment length polymorphisms and heterozygosity in the human genome. Hum Genet 66:1–17

    Google Scholar 

  • Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318:577–579

    Google Scholar 

  • Ginsburg D, Antin JH, Smith BR, Orkin SH, Rappeport JM (1985) Origin of cell populations after bone marrow transplantation J Clin Invest 75:596–603

    Google Scholar 

  • Glaser T, Lewis WH, Bruns GAP, Watkins PC, Rogler CE, Shows TB, Powers VE, Willard HF, Goguen JM, Simola KOJ, Housman DE (1986) The β-subunit of follicle-stimulating hormone is deleted in patients with aniridia and Wilms' tumour, allowing a further definition of the WAGR locus. Nature 321:882–887

    Google Scholar 

  • Gusella JF (1986) Recombinant DNA techniques in the diagnosis of inherited disorders. J Clin Invest 77:1723–1726

    Google Scholar 

  • Higgs DR, Goodbourn SEY, Wainscoat JS, Clegg JB, Weatherall DJ (1981) Highly variable regions of DNA flank the human α globin genes. Nucleic Acids Res 9:4213–4224

    Google Scholar 

  • Higgs DR, Wainscoat JS, Flint J, Hill AVS, Thein SL, Nicholls RD, Teal H, Ayyub H, Peto TEA, Falusi Y, Jarman AP, Clegg JB, Weatherall DJ (1986) Analysis of the human α-globin gene cluster reveals an highly informative locus. Proc Natl Acad Sci USA 83: 5165–5169

    Google Scholar 

  • Hill AVS, Jeffreys AJ (1985) Use of minisatellite DNA probes for determination of twin zygosity at birth. Lancet II:1394–1395

    Google Scholar 

  • Hill AVS, Nicholls RD, Thein SL, Higgs DR (1985) Recombination within the human embryonic ζ-globin locus. A common ζ-ζ chromosome produced by gene conversion of the ζ gene. Cell 42: 809–819

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79

    Google Scholar 

  • Jeffreys AJ, Brookfield JFY, Semeonoff R (1985c) Positive. identification of an immigration test case using human DNA fingerprints. Nature 317:818–819

    Google Scholar 

  • Knowlton RG, Brown VA, Braman JC, Barker D, Schumm JW, Murray C, Takvorian T, Ritz J, Doris-Keller H (1986) Use of highly polymorphic DNA probes for genotypic analysis following bone marrow transplantation. Blood 68:378–385

    Google Scholar 

  • Lan YF, Huang JC, Dozy AM, Kan YW (1984) Rapid screening test for antenatal sex determination. Lancet I:14–16

    Google Scholar 

  • Old JM, Higgs DR (1982) Gene analysis. In: Weatherall DJ (ed) The thalassaemias methods in haematology. Churchill Livingstone, London Edinburgh

    Google Scholar 

  • Old JM, Wainscoat JS (1983) A new DNA polymorphism in the β-globin gene cluster can be used for antenatal diagnosis of β-thalassaemia. Br J Haematol 53:337–341

    Google Scholar 

  • Proudfoot NJ, Gil A, Maniatis TM (1982) The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. Cell 31:553–563

    Google Scholar 

  • Reeders ST, Breuning MH, Davies KE, Nicholls RD, Jarman AP, Higgs DR, Pearson PL, Weatherall DJ (1985) A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16 Nature 317:542–544

    Google Scholar 

  • Schumm JW, Knowlton RG, Braman JC, Barker D, Vovis G, Akots G, Brown V, Gravius T, Helms C, Hsiao K, Rediker K, Thurston J, Botstein D, Doris-Keller H (1985) Detection of more than 500 single copy RFLP's by random screening. (8th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 40:739

    Google Scholar 

  • Smouse PE, Chakraborty R (1986) The use of restriction fragment length polymorphisms in paternity analysis. Am J Hum Genet 38: 918–936

    Google Scholar 

  • Thein SL, Oscier DG, Flint J, Wainscoat JS (1986) Ha-ras hypervariable alleles in myelodysplasia. Nature 321:84–85

    Google Scholar 

  • Vergnaud G, Kaplan L, Weissenbach J, Dumez Y, Berger R, Tiollais P, Guelloen G (1984) Rapid and early determination, of sex using trophoblast biopsy specimens and Y chromosome specific DNA probes. Br Med J 284:73–76

    Google Scholar 

  • Wainscoat JS, Kulozik AE, Ramsay M, Falusi AG, Weatherall DJ (1986) A Taq 1γ-globin DNA polymorphism: an African-specific marker. Hum Genet 74:90–92

    Google Scholar 

  • Wyman AR, White R (1980) A highly polymorphic locus in human DNA. Proc Natl Acad Sci USA 77:6754–6758

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wainscoat, J.S., Pilkington, S., Peto, T.E.A. et al. Allele-specific DNA identity patterns. Hum Genet 75, 384–387 (1987). https://doi.org/10.1007/BF00284114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284114

Keywords

Navigation