Skip to main content
Log in

Modified dissipativity for a non-linear evolution equation arising in turbulence

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We are concerned with the regularity properties for all times of the equation

$$\frac{{\partial U}}{{\partial t}}\left( {t,x} \right) = - \frac{{\partial ^2 }}{{\partial x^2 }}\left[ {U\left( {t,{\text{0}}} \right) - U\left( {t,x} \right)} \right]^2 - v\left( { - \frac{{\partial ^2 }}{{\partial x^2 }}} \right)^\alpha U\left( {t,x} \right)$$

which arises, with α=1, in the theory of turbulence. Here U(t,·) is of positive type and the dissipativity α is a non-negative real number. It is shown that for arbitrary ν≧0 and ɛ>0, there exists a global solution in \(L^\infty [0,\infty ;H^{\tfrac{3}{2} - \varepsilon } (\mathbb{R})]\). If ν>0 and \(\alpha > \alpha _{cr} = \tfrac{1}{2}\), smoothness of initial data persists indefinitely. If 0≦α<α cr, there exist positive constants ν1(α) and ν2(α), depending on the data, such that global regularity persists for ν>ν1(α), whereas, for 0≦ν<ν2(α), the second spatial derivative at the origin blows up after a finite time. It is conjectured that with a suitable choice of α cr, similar results hold for the Navier-Stokes equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brauner, C.M., P. Penel & R. Temam, Sur une équation d'évolution non linéaire liée à la théorie de la turbulence, C.R. Acad. Sc. Paris, A279, 65–68 and 115–118 (1974)

    MathSciNet  Google Scholar 

  2. Brauner, C.M., P. Penel & R. Temam, Sur Une Équation d'Évolution Non Linéaire Liée à la Théorie de la Turbulence, Ann. Sc. Norm. Sup. Pisa (ser. 4), 4, 101–128 (1977)

    MathSciNet  Google Scholar 

  3. Brissaud, A., U. Frisch, J. Lêorat, M. Lesieur, A. Mazure, A. Pouquet, R. Sadourny & P.L. Sulem, Catastrophe énergétique et nature de la turbulence, Ann. Geophys., 29, 539–545 (1973)

    Google Scholar 

  4. Burgers, J.M., A mathematical model illustrating the theory of turbulence, Advances in Mechanics, 1, 171–199 (1948)

    MathSciNet  Google Scholar 

  5. Foias, C. & P. Penel, Dissipation totale de l'énergie dans une équation non linéaire liée à la théorie de la turbulence, C.R. Acad. Sc. Paris, A 280, 629–632 (1975)

    MathSciNet  Google Scholar 

  6. Frisch, U., Recent advances in analytic theories of turbulence. Proceedings of the Conference on Prospects for Theoretical Turbulence Research, NCAR, Boulder, Colorado, 1974

    Google Scholar 

  7. Frisch, U., M. Lesieur & A. Brissaud, Markovian Random Coupling Model for Turbulence, J. Fluid Mech., 65, 145–152 (1974)

    ADS  Google Scholar 

  8. Herring, J.R. & R.H. Kraichnan, Comparison of some approximations for isotropic turbulence in statistical models and turbulence. In M. Rosenblatt & C. Van Alta, eds., Lecture Notes in Physics 12, Springer, 1972, pp. 148–194

  9. Kato, T., Non-stationary flows of viscous and ideal fluids in ℝ3, J. Funct. Anal., 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  10. Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluids for very large Reynolds number, C.R. Acad. Sc. U.R.S.S., 30 (1941), 301–305; Soviet Physics, Uspekhi 10, 734–736 (1968)

    MATH  Google Scholar 

  11. Kolmogorov, A.N., A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 12, 82–85 (1962)

    ADS  MathSciNet  Google Scholar 

  12. Kraichnan, R.H., Dynamics of non-linear stochastic systems. J. Math. Phys., 2, 124–148 (1961) Erratum: 3, 205 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kraichnan, R.H., On Kolmogorov's inertial range theories, J. Fluid Mech., 62, 305–330 (1974)

    ADS  MATH  MathSciNet  Google Scholar 

  14. Kruzkov, S.N., First order quasilinear equations in several independent variables, Math. USSR Sbornik 10, 217–243 (1970)

    Google Scholar 

  15. Ladyzenskaya, O.A., A Mathematical Theory of Viscous Incompressible Flow, first ed. New York: Gordon and Breach, 1963

    Google Scholar 

  16. Lesieur, M., Contribution à l'Étude de Quelques Problèmes en Turbulence Pleinement Développée. Thèse d'Etat, Université de Nice, 1973

  17. Lesieur, M. & P.L. Sulem, Les équations spectrales en turbulence homogène et isotrope. Quelques résultats théoriques et numériques. In Turbulence and Navier-Stokes Equations, R. Temam eds., Lecture Notes in Mathematics 565. Springer, 1976

  18. Lions, J.L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Paris: Dunod-Gauthier-Villars, 1969

    Google Scholar 

  19. Orszag, S.A., Lectures on the statistical theory of turbulence in fluid dynamics. Proc. of the 1973 Les Houches Summer School of Theoretical Physics, R. Balian & J.L. Peube, ed. Gordon and Breach, 1973, p. 235.

  20. Pazy, A., Semi-groups of Linear Operators and Applications to Partial Differential Equations. College Park: University of Maryland, 1974

    Google Scholar 

  21. Penel, P., Sur une Équation d'Évolution non Linéaire Liée à la Théorie de la Turbulence. Thèse d'Etat, Université de Paris-Sud, Orsay, 1975

  22. Rudin, W., Real and Complex Analysis. New York: McGraw-Hill 1966

    Google Scholar 

  23. Sulem, P.L. & U. Frisch, Bounds on energy flux for finite energy turbulence, J. Fluid Mech., 72, 417–423 (1975)

    ADS  Google Scholar 

  24. Volpert, The space B.V. and quasi-linear equations, Math. Sb. 73 (115), 255–302 (1967); Math. USSR Sbornik, 2, 225–267 (1967)

    MATH  MathSciNet  Google Scholar 

  25. Yoshida, K., Functional Analysis, third ed. Berlin-Heidelberg-New York: Springer, 1971

    Google Scholar 

  26. Frisch, U., Sulem, P.L., and Nelkin, M., A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87, 719–736 (1978)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Dafermos

This work was performed while the first author was visiting the University of Nice and the second was at the University of Paris Sud-Orsay

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardos, C., Penel, P., Frisch, U. et al. Modified dissipativity for a non-linear evolution equation arising in turbulence. Arch. Rational Mech. Anal. 71, 237–256 (1979). https://doi.org/10.1007/BF00280598

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00280598

Keywords

Navigation