Skip to main content
Log in

Molecular model for sodium conductance and calcium transport in the squid axon

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

A molecular and biochemically plausible model for the excitation process of the sodium pore is suggested. From basic arguments it is concluded that the sodium pore exists in at least three states: the resting state, the sodium conducting state, and the refractory state. They are connected to form a cyclic process. A specification of the different states is given. It is suggested that inactivation of the sodium pore results from a conformational change, which is caused by the transport of a calcium ion through the membrane. The transport carrier is the sodium pore. This assumption can explain the observed calcium influx during stimulation, and the effect of Ca on the rate of inactivation and on the rate, at which sodium conductance shuts off upon repolarization. It cannot give a quantitative explanation for the effect of Ca on the rate of rise, peak sodium conductance, and steady state inactivation. These aspects are successfully described by the surface potential hypothesis, which has been published recently. It is concluded, that a combination of both theories gives a rather complete description of the sodium pore. The Ca transport model is discussed quantitatively and in great detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong, C. M., Bezanilla, F.: Currents related to the movement of the gating particles of the sodium channels. Nature 242, 459–461 (1973)

    Google Scholar 

  • Armstrong, C. M., Bezanilla, F.: Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63, 533–552 (1974)

    Google Scholar 

  • Armstrong, C. M., Bezanilla, F., Rojas, E. Destruction of sodium conductance inactivation in squid axons perfused with Pronase. J. Gen. Physiol. 62, 375–391 (1973).

    Google Scholar 

  • Baker, P. F.: Transport and metabolism of calcium ions in nerve. Prog. Biophys. Mol. Biol. 24, 179–223 (1972)

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Ridgway, E. B.: Depolarization and calcium entry in squid giant axons. J. Physiol. 218, 709–755 (1971)

    Google Scholar 

  • Begenisich, T., Lynch, C.: Effects of internal divalent cations on voltage-clamped squid axons. J. Gen. Physiol. 63, 675–689 (1974)

    Google Scholar 

  • Benzer, T. J., Raftery, M. A.: Solubilization and partial characterization of the tetrodotoxin binding component from nerve axons. Biochem. Biophys. Res. Commun. 51, 939–944 (1973)

    Google Scholar 

  • Bezanilla, F., Armstrong, C. M.: Gating currents of the sodium channels: three ways to block them. Science 183, 753–754 (1974)

    Google Scholar 

  • Brismar, T.: Effects of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibres of Xenopus laevis. Potential clamp experiments. Acta physiol. Scand. 87, 474–484 (1973)

    Google Scholar 

  • Brown, J. E., Cohen, L. B., de Weer, P., Pinto, L. H., Ross, W. N., Salzberg, B. M.: Rapid changes of intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axons. Biophys. J. 15, 1155–1160 (1975)

    Google Scholar 

  • Conti, F., de Felice, I. J., Wanke, E.: Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol. 248, 45–82 (1975)

    Google Scholar 

  • Ehrenstein, G., Gilbert, D. L.: Evidence for membrane surface charge from measurement of potassium kinetics as a function of external divalent cation concentration. Biophys. J. 13, 495–497 (1973)

    Google Scholar 

  • Fishman, S. N., Volkenstein, M. V.: Physicochemical model of Na+ inactivation. Biochim. Biophys. Acta 241, 697–699 (1971)

    Google Scholar 

  • Fishman, S. N., Chodorov, B. J., Volkenstein, M. V.: Molecular mechanism of membrane ionic permeability changes. Biochim. Biophys. Acta 225, 1–10 (1971)

    Google Scholar 

  • Flückinger, E., Keynes, R. D.: The calcium permeability of Loligo axons. J. Physiol. 128, 41–42P (1955)

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A. L.: The action of Ca on the electrical properties of squid axons. J. Physiol. 137, 218–244 (1957)

    Google Scholar 

  • Gilbert, D. L., Ehrenstein, G.: Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys. J. 9, 447–463 (1969)

    Google Scholar 

  • Goldman, L.: Kinetics of channel gating in excitable membranes. Quarterly Reviews of Biophysics 9, 491–526 (1976)

    Google Scholar 

  • Henderson, R., Wang, J. H.: Solubilization of a specific tetrodotoxin-binding component from garfish olfactory nerve membrane. Biochemistry 11, 4565–4569 (1972)

    Google Scholar 

  • Henderson, R., Ritchie, J. M., Strichartz, G. R.: Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane. Proc. Nat. Acad. Sci. USA 71, 3936–3940 (1974)

    Google Scholar 

  • Hill, T. L.: Thermodynamics for chemists and biologists. Reading, Mass.: Addison-Wesley Publishing Company, 1968

    Google Scholar 

  • Hille, B.: Ionic channels in nerve membranes. Prog. Biophys. Mol. Biol. 21, 1–32 (1970)

    Google Scholar 

  • Hille, B., Woodhull, A. M., Shapiro, B. I.: Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Phil. Trans. R. Soc. B. 270, 301–318 (1975)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952a)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116, 473–496 (1952b)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116, 497–506 (1952c)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952d)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952)

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: Movement of labelled calcium in squid giant axons. J. Physiol. 138, 253–281 (1957)

    Google Scholar 

  • Jakobsson, E.: An assessment of a coupled three-state kinetic model for sodium conductance changes. Biophys. J. 16, 291–301 (1976)

    Google Scholar 

  • Keynes, R. D., Bezanilla, F., Rojas, E., Taylor, R. E.: The rate of action of tetrodotoxin on sodium conductance in the squid giant axon. Phil. Trans. R. Soc. B 270, 365–375 (1975)

    Google Scholar 

  • Keynes, R. D., Rojas, E.: Characteristics of the sodium gating current in the squid giant axon. J. Physiol. 233, p. 28 P (1973)

    Google Scholar 

  • Keynes, R. D., Rojas, E.: Kinetics and steady-state properties of the charged system eontrolling sodium conductance in the squid giant axon. J. Physiol. 239, 393–434 (1974)

    Google Scholar 

  • Keynes, R. D., Rojas, E.: The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. J. Physiol. 255, 157–189 (1976)

    Google Scholar 

  • Levinson, S. R., Meves, H.: The binding of tritiated tetrodotoxin to squid giant axons. Phil. Trans. R. Soc. B. 270, 349–352 (1975)

    Google Scholar 

  • Meves, H.: The effect of holding potential on the asymmetry currents in squid giant axons. J. Physiol. 243, 847–867 (1974)

    Google Scholar 

  • Meves, H.: Calcium currents in squid axon. Phil. Trans. R. Soc. B 270, 377–387 (1975)

    Google Scholar 

  • Meves, H., Vogel, W.: Calcium inward currents in internally perfused giant axons. J. Physiol. 235, 225–265 (1973)

    Google Scholar 

  • Moore, L. E., Jakobsson, E.: Interpretation of the sodium permeability changes of myelinated nerve in terms of linear relaxation theory. J. Theor. Biol. 33, 77–89 (1971)

    Google Scholar 

  • Moore, J. W., Cox, E. B.: A kinetic model for the sodium conductance system in squid axon. Biophys. J. 16, 171–192 (1976)

    Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P.: Effect of surface charge on stationary potassium conductance of Ranvier node membrane. III. Effect of divalent cations. Biofizika 17, 801–808 (1972)

    Google Scholar 

  • Rojas, E., Taylor, R. E.: Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control. J. Physiol. 252, 1–27 (1975)

    Google Scholar 

  • Romey, G., Abita, J. P., Schweitz, H., Wunderer, G., Ladzdunski, M.: Sea anemone toxin: A tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling. Proc. Nat. Acad. Sci. USA 73, 4055–4059 (1976)

    Google Scholar 

  • Roy, G.: Models of ionic currents for excitable membranes. Prog. Biophys. Mol. Biol. 29, 57–104 (1975)

    Google Scholar 

  • Woodhull, A. M.: Ionic blockage of sodium channels. J. Gen. Physiol. 61, 687–708 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siep, E. Molecular model for sodium conductance and calcium transport in the squid axon. J. Math. Biology 5, 143–168 (1978). https://doi.org/10.1007/BF00275896

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275896

Keywords

Navigation