Skip to main content
Log in

Irrigation for crops in a sub-humid environment

III. An irrigation scheduling model for predicting soybean water use and crop yield

  • Published:
Irrigation Science Aims and scope Submit manuscript

Summary

A soil water use model was linked with a model of soybean growth and yield to simulate soybean production in an area of New South Wales, Australia. The model was developed and tested against results from a 3-year soybean irrigation experiment. Good agreement was obtained between measured and predicted water use and yield for two soybean cultivars (Ruse and Bragg). In the test region summer rainfall averages 300 mm but is highly variable. Therefore the model was used to simulate soybean production using 25 years of historic rainfall data to examine the amount of irrigation water necessary to produce high yields while using both irrigation water and rainfall efficiently. It was found that to obtain high yields for the 25 years, an average of 4.7 crop irrigations were required, using 4.04 X 103 m3 ha−1 of irrigation water. Because of variations in rainfall the number of crop irrigations varied between years from 2 to 6 and the amount of irrigation water required to supplement natural rainfall varied from 1.63 to 5.14 X 103 m3 ha−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Browne RL, Mengerson AG (1979) Current irrigation practice and approaches taken to improve irrigation efficiency in the lower Namoi Valley. Presented at the International Commission on Irrigation and Drainage Seminar, Sydney, Australia May 15–17

  • Burch GJ, Smith RCG, Mason WK (1978) Agronomic and physiological responses of soybean and sorghum crops to water deficits. 11. Crop evaporation, soil water depletion and root distribution. Aust J Plant Physiol 5:169

    Google Scholar 

  • Constable GA (1977) The effect of planting date on soybeans in Namoi Valley, N.S.W. Aust J Exp Agric Anim Husb 17:148

    Google Scholar 

  • Constable GA, Hearn AB (1978) Agronomic and physiological responses of soybean and sorghum crops to water deficits. l. Growth, development and yield. Aust J Plant Physiol 5:159

    Google Scholar 

  • Constable GA, Hearn AB (1980) Irrigation for crops in a sub-humid environment. I. Growth and yield of soybeans. Irrig Sci 2:l

    Google Scholar 

  • Egli DB, Leggett JE (1976) Rate of dry mater accumulation in soybean seeds with varying source-sink ratios. Agron J 68:371

    Google Scholar 

  • Hanks RJ (1974) Model for predicting plant yield as influenced by water use. Agron J 66:660

    Google Scholar 

  • Hanway JJ, and Weber CR (1971) Dry matter accumulation in eight soybean (Glycine max (L.) Merrill) varieties. Agron J 63:227

    Google Scholar 

  • Hiler EA, Howell TA, Bordovsky DG (1971) Stress day index... a new concept for irrigation timing. Presented at A.S.C.E. Speciality Conference, Optimization of Irrigation and Drainage Systems, Lincoln, Nebraska

    Google Scholar 

  • Jensen ME (1978) Irrigation water management for the next decade. N.Z. Irrigation Conference Ashburton, April 11–13

  • Jensen ME, Robb DCN, Franzoy CE (1970) Scheduling irrigations using climate-crop-soil data. ASCE J brig Drain Div 96:25

    Google Scholar 

  • Jensen ME, Wright JL, Pratt BJ (1971) Estimating soil moisture depletion from climate, crop and soil data. Trans ASAE 14:954

    Google Scholar 

  • Mason WK (1979) The irrigation scheduling of soybeans. PhD Thesis, University of New England, Armidale, Australia

    Google Scholar 

  • Mason WK, Constable GA, Smith RCG (1980) Irrigation for crops in a sub-humid environment. II. Water requirements of soybeans. Irrig Sci 2:13

    Google Scholar 

  • Mason WK, Smith RCG (1981) Irrigation for crops in a sub-humid environment. IV. Analysis of current irrigation practice of soybeans and the potential for improved efficiency. Irrig Sci 2:103

    Google Scholar 

  • Mauney JR, Fry KE, Guinn G (1978) Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum, and sunflower. Crop Sci 18:259

    Google Scholar 

  • Philip JR (1957) Evaporation and moisture and heat fields in the soil. J Meteorol 14:354

    Google Scholar 

  • Priestley LHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81

    Google Scholar 

  • Ritchie JT (1971) Dryland evaporative flux in a subhumid climate. I. Micrometeorological influences. Agron J 63:51

    Google Scholar 

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204

    Google Scholar 

  • Ritchie JT (1974a) Atmospheric and soil water influences on the plant water balance. Agric Meteorol 14:183

    Google Scholar 

  • Ritchie JT (1974b) Evaluating irrigation needs for Southeastern U.S.A. Speciality Conference on Contribution of Irrigation and Drainage to World Food Supply, p 262–279

  • Ritchie JT, Burnett E (1971) Dryland evaporative flux in a subhumid climate: II. Plant influences. Agron J 63:56

    Google Scholar 

  • Ritchie JT, Burnett E, Henderson RC (1972) Dryland evaporative flux in a subhumid climate: III. Soil water influences. Agron J 64:168

    Google Scholar 

  • Ritchie JT, Jordan WR (1972) Dryland evaporative flux in a subhumid climate: IV. Relation to plant water stress. Agron J 64:173

    Google Scholar 

  • Ross R (1978) Computers aid San Joaquin irrigators. Irrigation Age, October 1978, 31–33

  • Salter PJ, Goode JE (1967) Crop response to water at different stages of growth. Commonwealth Agr. Bur., Farnham Royal

    Google Scholar 

  • Shibles R, Anderson IC, Gibson AH (1975) Soybean. In: Evans LT (ed) Crop physiology, Cambridge University Press, Cambridge, p 151–189

    Google Scholar 

  • Shibles RM, Weber CR (1965) Leaf area, solar radiation interception and dry matter production by soybeans. Crop Sci 5:575

    Google Scholar 

  • Shibles RM, Weber CR (1966) Interception of solar radiation and dry matter production by various soybean planting patterns. Crop Sci 6:55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, W.K., Smith, R.C.G. Irrigation for crops in a sub-humid environment. Irrig Sci 2, 89–101 (1981). https://doi.org/10.1007/BF00270752

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270752

Keywords

Navigation