Skip to main content
Log in

Butyrate suppression of position-effect variegation in Drosophila melanogaster

  • Short Communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The strain of Drosophila melanogaster carrying the inversion In(1)w m4, which juxtaposes the normal w + gene to the centromeric heterochromatin, variegates for pigmentation in the eye. This strain was treated with various concentrations of n-butyrate and n-proprionate during the embryonic and larval stages. Concentrations as low as 70mM markedly suppress the variegated eye phenotype. This suggests that non-acetylated histones play a major role in the phenomenon of position-effect variegation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baker, W.K.: Position-effect variegation. Adv. Genet. 14, 133–169 (1968)

    Google Scholar 

  • Becker, H.J.: Untersuchungen zur Wirkung des Heterochromatins auf die Genmanifestierung bei Drosophila melanogaster. Verh. Deutschen Zool. Ges. Bonn. 1960, pp. 283–291 (1961)

  • Blumenfeld, M., Orf, J.W., Sina, B.S., Kreber, R.A., Callahan, M.A., Mullins, J.I., Snyder, L.A.: Correlation between phosphorylated Hl histones and satellite DNAs in Drosophila virilis. Proc. Natl. Acad. Sci. U.S.A. 75 2, 866–870 (1978)

    Google Scholar 

  • Candido, E.P.M., Reeves, R., Davie, J.R.: Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105–113 (1978)

    Google Scholar 

  • Cattanach, G.M.: Position-effect variegation in the mouse. Genet. Res. Camb. 23, 291–306 (1974)

    Google Scholar 

  • Cooper, K.W.: Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster and the theory of “heterochromatin”. Chromosoma 10, 535–588 (1959)

    Google Scholar 

  • Davie, J.R., Candido, E.P.M.: Acetylated H4 is preferentially associated with template active chromatin. Proc. Natl. Acad. Sci. U.S.A. 75, 8, 3574–3577 (1978)

    Google Scholar 

  • Demerec, M., Slizynska, H.: Mottled white 258-18 of Drosophila melanogaster. Genetics 22, 641–649 (1937)

    Google Scholar 

  • Gowan, J.W., Gay, E.H.: Chromosome constitution and behavior in ever-sporting and mottling in Drosophila melanogaster. Genetics 19, 189–208 (1934)

    Google Scholar 

  • Grüneberg, H.: The position-effect proved by a spontaneous reinversion of the X chromosome in Drosophila melanogaster. J. Genet. 34, 169–189 (1937)

    Google Scholar 

  • Hartmann-Goldstein, I.J.: On the relationship between heterochromatinization and variegation in Drosophila with special reference to temperature-sensitive periods. Genet. Res. Camb. 10, 143–159 (1967)

    Google Scholar 

  • Henikoff, S.: Does position-effect variegation result from somatic gene loss. ICN-UCLA Keystone Conference on Eucaryotic Gene Regulation (1979)

  • Hinton, T.: The modification of the expression of a position effect. Am. Nat. 83, 69–94 (1949)

    Google Scholar 

  • Hinton, T.: A correlation of phenotypic changes and chromosomal rearrangements at the two ends of an inversion. Genetics 35, 188–205 (1950)

    Google Scholar 

  • Judd, B.H.: Direct proof of a variegated-type position effect at the white locus in Drosophila melanogaster. Genetics 40, 739–744 (1955)

    Google Scholar 

  • Khesin, R.B., Leibovitch, B.A.: Influence of defiency of the histone gene-containing 38B-40 region on X-chromosome template activity and the white gene position effect variegation in Drosophila melanogaster. Mol. Gen. Genet. 162, 323–328 (1978)

    Google Scholar 

  • Levy-Wilson, B., Watson, D.C., Dixon, G.H.: Multiacetylated forms of H4 are found in a putative transcriptionally competent chromatin fraction from trout testes. Nucleic Acid Res. 6, 259–274 (1979)

    Google Scholar 

  • Moore, G.D., Procunier, J.D., Cross, D.P., Grigliatti, T.A.: Histone gene deficiencies and position-effect variegation in Drosophila. Nature 282, 312–314 (1979)

    Google Scholar 

  • Riggs, M.G., Whittaker, R.G., Neumann, J.R., Ingram, V.M.: n-Burtyrate causes histone modification in Hela and Friend erythroleukemic cells. Nature 268, 462–464 (1977)

    Google Scholar 

  • Sealy, L., Chalkley, R.: The effect of sodium butyrate on histone modification. Cell 14, 115–121 (1978)

    Google Scholar 

  • Shoup, J.R.: The development of pigment granules in the eyes of wild type and mutant Drosophila melanogaster. J. Cell Biol. 29, 223–249 (1966)

    Google Scholar 

  • Spofford, J.B.: Single-locus modification of position-effect variegation in Drosophila melanogaster. I. White variegation. Genetics 57, 751–766 (1967)

    Google Scholar 

  • Spofford, J.B.: Position-effect variegation in Drosophila. In: The Genetics and Biology of Drosophila (Ashburner, M., Novitski, E., eds) pp. 955–1018. New York: Academic Press 1976

    Google Scholar 

  • Welch, B.L.: On the comparison of several mean values: an alternative approach. Biometrika 38, 330–336 (1951)

    Google Scholar 

  • Zuckerkandl, E.: Recherches sur les propriétés et l'activité biologique de la chromatine. Biochimie 56 937–954 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gehring

This research was supported by Natural Sciences and Engineering Research Council Canada team grant A-1764 to T.A.G. and D.T. Suzuki, and Natural, Applied & Health Sciences grant 9704 to T.A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeves, R., Mottus, R. & Grigliatti, T.A. Butyrate suppression of position-effect variegation in Drosophila melanogaster . Molec. Gen. Genet. 178, 465–469 (1980). https://doi.org/10.1007/BF00270501

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270501

Keywords

Navigation