Skip to main content
Log in

Analysis of regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The transport systems (enzymeII-complexes of the PEP-dependent sugar: phosphotransferase system) coded for the mtl and in the gut (srl) operon of E. coli K12 have been shown to be the pacemaker enzymes in the catabolism of the two hexitols D-mannitol and D-glucitol, respecitively. As for other pacemaker enzymes their activity is regulated in a complex way: (i) via competitive inhibition by analogues. (ii) via non-competitive (feedback) inhibition by the simultaneous, rapid uptake of a number of structurally related or non-related carbohydrates, regardless if these are transported by group translocation, active transport or facilitated diffusion. This type of inhibition is strongly reinforced, if the inhibitory carbohydrates are converted efficiently into hexose-phosphates at the same time. Among these, predominantly D-fructose-6-P seems to act as a feedback inhibitor for the hexitol specific enzymeII-complexes; (iii) inhibition of hexitol-phosphate accumulation by rapid exchange with and/or chase out of the cell by D-glucose-6-P. The influence of additional parameters (PEP level, P∼HPr level) and indications for the existence of further mechanisms controlling the activity of hexitol and other carbohydrate transport systems will be discussed, as will be the part the inhibitory mechanisms described above play in the phenomena of transient repression and inducer exclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhya, S., Echols, H.: Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J. Bact. 92, 601–608 (1966)

    Google Scholar 

  • Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K12. Bact. Rev. 40, 116–167 (1976)

    Google Scholar 

  • Clark, B., Holms, W.H.: Control of the sequential utilization of glucose and fructose by Escherichia coli. J. gen. Microbiol. 95, 191–201 (1975)

    Google Scholar 

  • Cooper, R.A., Kornberg, H.L.: The direct synthesis of phosphoenolpyruvate by Escherichia coli. Proc. roy. Soc. B. 168, 263–280 (1967)

    Google Scholar 

  • Dietzler, D.N., Leckie, M.P., Magnani, J.L., Sughme, M.J., Bergstein, P.E.: Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. J. biol. Chem. 250, 7188–7203 (1975)

    Google Scholar 

  • Hagihira, H., Wilson, T.H., Lin, E.C.C.: Studies on the glucose transport system in Escherichia coli with α-methyglucoside as substrate. Biochim. biophys. Acta (Amst.) 78, 505–515 (1963)

    Google Scholar 

  • Haguenauer, R., Kepes, A.: NaF inhibition of phosphorylation and dephosphorylation involved in α-methyl-D glucoside transport in E. coli K12. A pH dependent phenomenon sensitive to uncoupling agents. Biochimie 54, 505–512 (1972)

    Google Scholar 

  • Hofsten, B.v.: The inhibitory effect of galactosides on the growth of E. coli. Biochim. biophys. Acta (Amst.) 48, 164–171 (1961)

    Google Scholar 

  • Jones-Mortimer, M.C., Kornberg, H.L.: Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12. J. gen. Microbiol, 96, 383–391 (1976)

    Google Scholar 

  • Kaback, H.R.: Regulation of sugar transport in isolated bacterial membrane preparations from Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 63, 725–731 (1969)

    Google Scholar 

  • Kornberg, H.L.: Fine control of sugar uptake by Escherichia coli. Symp. Soc. exp. Biol. 27, 175–193 (1973)

    Google Scholar 

  • Kornberg, H.L., Jones-Mortimer, M.C.: The phosphotransferase system as a site of cellular control. Symp. Soc. General Microbiol. XXVII. Microbial Energetics, pp. 217–240 (1977)

  • Lengeler, J.: Untersuchungen zum Glukose Effekt bei der Synthese der Galaktose-Enzyme von Escherichia coli. Z. Vererbungsl. 98, 203–229 (1966)

    Google Scholar 

  • Lengeler, J.: Die Regulation des Manit-Sorbit Stoffwechsels in Escherichia coli K12. Hoppe-Seylers Z. physiol. Chem. 354, 1218 (1973)

    Google Scholar 

  • Lengeler, J.: Mutations affecting transport of the hexitols D-manitol, D-glucitol, and galactitol in Escherichia coli K12: isolation and mapping. J. Bact. 124, 26–38 (1975a)

    Google Scholar 

  • Lengeler, J.: Nature and properties of hexitol transport systems in Escherichia coli. J. Bact. 124, 39–47 (1975b)

    Google Scholar 

  • Lengeler, J.: Analysis of mutation affecting the dissimilation of galactitol (dulcitol) in Escherichia coli K12. Molec. gen. Genet. 152, 83–91 (1977)

    Google Scholar 

  • Lengeler, J., Lin, E.C.C.: Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J. Bact. 112, 840–848 (1972)

    Google Scholar 

  • Lengeler, J., Steinberger, H.: Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Molec. gen. Genet. 164, 163–169 (1978)

    Google Scholar 

  • Lin, E.C.C.: The genetics of bacterial transport systems. Annu. Rev. Genet. 4, 225–262 (1970)

    Google Scholar 

  • Paigen, K., Williams, B.: Catabolite repression and other control mechanisms in carbohydrate utilization. Advanc. Microbiol. Physiol. 4, 252–324 (1970)

    Google Scholar 

  • Peterkofsky, A., Gazdar, C.: Interaction of enzymel of the phosphoenolpyravate: sugar phosphotransferase system with adenylate cyclase of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 72, 2920–2924 (1975)

    Google Scholar 

  • Postma, P.W., Rosenman, S.: The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim. biophys. Acta (Amst.) 457, 213–257 (1976)

    Google Scholar 

  • Reiner, A.M.: Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J. Bact. 132, 166–173 (1977)

    Google Scholar 

  • Roehl, R.A., Vinopal, R.T.: Lack of phosphotranferase function in phosphofructokinase mutants of Escherichia coli. J. Bact. 126, 852–860 (1976)

    Google Scholar 

  • Ruch, F.E., Lengeler, J., Lin, E.C.C.: Regulation of glycerol catabolism in Klebsiella aerogenes. J. Bact. 119, 50–56 (1974)

    Google Scholar 

  • Saier, M.H., Feucht, F.U., Mora, W.K.: Sugar: phosphate sugar transphosphorylation and exchange group translocation catalyzed by the enzymeII-complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J. biol. Chem. 252, 8899–8907; 8908–8916 (1977)

    Google Scholar 

  • Solomon, E., Lin, E.C.C.: Mutations affecting the dissimilation of mannitol by Escherichia coli K12. J. Bact. 111, 566–574 (1972)

    Google Scholar 

  • Winkler, H.H.: Efflux and the steady state in α-methyl-glucoside transport in Escherichia coli. J. Bact. 106, 362–368 (1971)

    Google Scholar 

  • Winkler, H.H., Wilson, T.H.: Inhibition of β-galactoside transport by substrates of the glucose transport system in Escherichia coli. Biochim. biophys. Acta (Amst.) 135, 1030–1051 (1966)

    Google Scholar 

  • Zwaig, N., Kistler, W.S., Lin, E.C.C.: Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J Bact. 102, 753–759 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lengeler, J., Steinberger, H. Analysis of regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12. Molec. Gen. Genet. 167, 75–82 (1978). https://doi.org/10.1007/BF00270323

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270323

Keywords

Navigation