Skip to main content
Log in

M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Experiments on human spatial orientation were conducted on four crewmembers of Space Shuttle Spacelab Mission 1. This introductory paper presents the conceptual background of the project, the relationship among the experiments and their relevance to a “sensory reinterpretation hypothesis”. Detailed experiment procedures and results are presented in the accompanying papers in this series. The overall findings are discussed in this article as they pertain to the following aspects of hypothesized sensory reinterpretation in weightlessness: 1) utricular otolith afferent signals are reinterpreted as indicating head translation rather than tilt, 2) sensitivity of reflex responses to footward acceleration is reduced, and 3) increased weighting is given to visual and tactile cues in orientation perception and posture control. Three subjects developed space motion sickness symptoms, which abated after several days. Head movements, as well as visual and tactile cues to orientation influenced symptoms in a manner consistent with the sensory-motor conflict theory of space motion sickness. Six short duration tests of motion sickness susceptibility, conducted pre-flight, failed to predict sickness intensity in weightlessness. An early otolith-spinal reflex, measured by electromyography from the gastrocnemius-soleus muscles during sudden footward acceleration, was inhibited immediately upon entering weightlessness and declined further during the flight, but was unchanged from pre-flight when measured shortly after return to earth. Dynamic visual-vestibular interaction was studied by measuring subjective roll self-motion created by looking into a spinning drum. Results suggest increased weighting of visual cues and reduced weighting of graviceptor signals in weightlessness. Following the 10 day flight, erect posture with eyes closed was disturbed for several days. Somewhat greater visual field dependence post-flight was observed for two of the crew. Post-flight tests using horizontal linear acceleration revealed an increased variance in detection of acceleration. The ability of the returned crew to use non-visual lateral acceleration cues for a manual control task appeared enhanced over their pre-flight ability for a few days after return.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrott AP, Young LR (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 6. Vestibular reactions to lateral acceleration following ten days of weightlessness. Exp Brain Res 64: 347–357

    Google Scholar 

  • von Baumgarten RJ, Benson A, Berthoz A, Brandt Th, Brand U, Bruzek W, Dichgans J, Kass J, Probst Th, Scherer H, Vieville T, Vogel H, Wetzig J (1984) Effects of rectilinear acceleration and optokinetic and caloric stimulations in space. Science 225: 208–211

    Google Scholar 

  • von Baumgarten RJ, Vogel H, Kass JR (1981) Nauseogenic properties of various dynamic and static force environments. Acta Astronautica 8: 1005–1013

    Google Scholar 

  • Benson AJ (1977) Possible mechanisms of motion and space sickness in life sciences research in space. ESA SP-130, European Space Agency, Paris 101–108

    Google Scholar 

  • Benson A, von Baumgarten R, Berthoz A, Brand U, Brandt Th, Bruzeh W, Dichgans J, Kass J, Probst Th, Scherer H, Vieville T, Vogel H, Wetzig J (1984) Some results of the European Vestibular Experiments in the Spacelab-1 Mission. AGARD Conf Proc No 377, NATO, Neuilly-sur-Seine, France, pp 1B1–1B10

    Google Scholar 

  • Chappel CR, Knott K (1984) The Spacelab experience: a synopsis. Science 225: 163–165

    Google Scholar 

  • Clement G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE (1985) Changes in posture during transient perturbations in microgravity. Aviat Space Environm Med 56: 666–671

    Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey I, II, III. J Neurophys 39: 970–1008

    Google Scholar 

  • Fernandez C, Macomber GR (1962) Inertial guidance engineering. Prentice Hall, Englewood Cliffs NJ

    Google Scholar 

  • Fregley AR, Graybiel A (1970) Labyrinthine defects as shown by ataxia and caloric tests. Acta Otolaryngol 69: 216–222

    Google Scholar 

  • Garriott OK, Lichtenberg BK, Merbold U, Parker R (1984) Payload crew members' view of Spacelab operations. Science 225: 163–165

    Google Scholar 

  • Graybiel A, Miller EF, Homick JL (1977) Experiment M131 human vestibular function. In: Johnson RS, Deitlein LF (eds) Biomedical results from Skylab. NASA SP-377: 74–103

  • Held R, Freedman SJ (1963) Plasticity in human sensorimotor control. Science 142: 455–462

    Google Scholar 

  • Homick JL, Miller EF (1975) Apollo flight crew vestibular assessment. In: Johnson RS, Deitlein LF, Berry CA (eds) Results of Apollo. NASA SP-368, Washington, DC

  • Homick JL, Reschke MF (1977) Postural equilibrium following exposure to weightless space flight. Acta Otolaryngol 83: 455–464

    Google Scholar 

  • Homick JL, Reschke MF, Vander Ploeg JM (1985) Space adaptation syndrome: incidence and operational implications for the STS program. AGARD CP-372. Neuilly-sur-Seine, France, p 36

  • Howard I, Templeton WB (1966) Human spatial orientation. Wiley and Sons, London

    Google Scholar 

  • Howard I (1982) Human visual orientation. Wiley and Sons, New York

    Google Scholar 

  • Igarashi M, Watanabe T, Maxian PM (1970) Dynamic equilibrium in squirrel monkeys after unilateral and bilateral labyrinthectomy. Acta Otolaryngol 69: 247–253

    Google Scholar 

  • Kenyon RV, Young LR (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 5. Postural responses following exposure to weightlessness. Exp Brain Res 64: 335–346

    Google Scholar 

  • Lichtenberg BK, Arrott AP, Young LR (1982) Human ocular-counterrolling induced by varying linear accelerations. Exp Brain Res 48: 127–136

    Google Scholar 

  • Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Englemann, Leipzig; Bonset, Amsterdam, 1967

    Google Scholar 

  • Matsnev EI, Yakovleva IY, Tarasov IK, Alekseev VN, Kornilova LN, Mateev AD, Gorgiladze GI (1983) Aviat Space Environm Med 54: 312–317

    Google Scholar 

  • Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70: 272–281

    Google Scholar 

  • Oman CM (1982a) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Suppl 392

  • Oman CM (1982b) “Space Motion Sickness and Vestibular Experiments in Spacelab”, SAE-AIAA Intersociety Conf on Environmental Systems, Long Beach, CA

  • Oman CM, Lichtenberg BK, Money KE, McCoy RK (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 4. Space motion sickness: symptoms, stimuli and predictability. Exp Brain Res 64: 316–334

    Google Scholar 

  • Parker DE, Reschke MF, Arrott AP, Homick JL, Lichtenberg BK (1985) Otolith tilt translation reinterpretation following prolonged weightlessness: implications for preflight training. Aviat Space Environm Med 56: 601–607

    Google Scholar 

  • Reason JT, Brand JJ (1975) Motion sickness. Academic Press, London

    Google Scholar 

  • Reschke M, Anderson D, Homick J (1984) Vestibulospinal reflexes as a function of microgravity. Science 225: 212–214

    Google Scholar 

  • Rock I (1966) The nature of perceptual adaptation. Basic Books, New York

    Google Scholar 

  • Schöne H (1980) Orientierung im Raum. Wissenschaften Verlag, Stuttgart

    Google Scholar 

  • Thornton W, Biggers W, Thomas W, Pool S, Thaggart N (1985) Electronystagmography and audio potentials in spaceflight. Laryngoscope 95: 924–932

    Google Scholar 

  • Wallach H, Smith A (1972) Visual and proprioceptive adaptation to altered oculomotor adjustments. Percept Psychophysics 11: 413–416

    Google Scholar 

  • Wallach H, Bacon J (1972) The constancy of the orientation of the visual field. Perc Psychophysics 19: 492–498

    Google Scholar 

  • Watt DGD, Money KE, Tomi LM (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res 64: 308–315

    Google Scholar 

  • Watt DGD, Money KE, Bondar RL, Thirsk RB, Garneau M, Scully-Power P (1985) Canadian medical experiments on shuttle flight 41-G. Canad Aeronautics Space J 31: 215–226

    Google Scholar 

  • Welch RB (1978) Perceptual modification: Adapting to altered sensory environments. Academic Press, New York

    Google Scholar 

  • Witkin HA (1958) The perception of the upright. Sci Am 20: 51–56

    Google Scholar 

  • Vieville T, Clement G, Lestienne F, Berthoz A (1986) Adaptive modifications of the optokinetic and vestibulo-ocular reflexes in microgravity. In: Keller EL, Zee DS (eds) Adaptative processes in visual and oculomotor systems. Pergamon Press, London, pp 111–120

    Google Scholar 

  • Yakovleva IYu, Kornilova LN, Tarasov IK, Alekseyev VN (1980) Results of the study of the vestibular apparatus and the functions of the perception of space in cosmonauts (pre- and post-flight observations). Washington, DC, NASA Technical Memorandum NASA TM-76485

  • Young LR (1983) Space motion sickness and vestibular adaptation to weightlessness. In: Space physiology. Centre National d'Etudes Spatiales (CNES), Cepauds Editions, Toulouse (France), pp 119–127

    Google Scholar 

  • Young LR (1984) Perception of the body in space. In: Darian Smith I (ed) Handbook of physiology. The nervous system III. American Physiological Society

  • Young LR, Oman CM, Watt DGD, Money KE, Lichtenberg BK (1984) Spatial orientation in weightlessness and readaptation to earth's gravity. Science 225: 205–208

    CAS  PubMed  Google Scholar 

  • Young LR, Shelhamer M, Modestino SA (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 2. Visual vestibular interaction in weightlessness. Exp Brain Res 64: 299–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L.R., Oman, C.M., Watt, D.G.D. et al. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview. Exp Brain Res 64, 291–298 (1986). https://doi.org/10.1007/BF00237746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237746

Key words

Navigation