Skip to main content
Log in

Electrical currents generated by a partially purified Na/Ca exchanger from lobster muscle reconstituted into liposomes and adsorbed on black lipid membranes: Activation by photolysis of caged Ca2+

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The Na/Ca exchanger from lobster muscle crossreacts specifically with antibodies raised against the dog heart Na/Ca exchanger. Immunoblots of the lobster muscle and mammalian heart exchangers, following SDS-PAGE, indicate that the invertebrate and mammalian exchangers have similar molecular weights: about 120 kDa. The exchanger from lobster muscle was partially purified and functionally reconstituted into asolectin vesicles which were loaded with 160 mm NaCl. 45Ca uptake by these proteoliposomes was promoted by replacing 160 mm NaCl in the external medium with 160 mm KCl to produce an outwardly-directed Na+ concentration gradient. When the proteoliposomes were adsorbed onto black lipid membranes (BLM), and DMNitrophen-Ca2+ (“caged Ca2+”) was added to the KCl medium, photolytically-evoked Ca2+ concentration jumps elicited transient electric currents. These currents corresponded to positive charge exiting from the proteoliposomes, and were consistent with the Na/Ca exchanger-mediated exit of 3 Na+ in exchange for 1 entering Ca2+. The current was dependent upon the Ca2+ concentration jump, the protein integrity, and the outwardly directed Na+ gradient. KCl-loaded proteoliposomes did not produce any current. Low external Na+ concentrations augmented the current, whereas Na+ concentrations >25 mM reduced the current. The dependence of the current on free Ca2+ was Michaelis-Menten-like, with halfmaximal activation (KM(Ca)) at <10 μm Ca2+. Caged Sr2+ and Ba2+, but not Mg2+, also supported photolysisevoked outward current, as did Ni2+, but not Mn2+. However, Mg2+ and Mn2+ augmented the Cadependent current, perhaps by facilitating the adsorption of proteoliposomes to the BLM. The Ca-dependent current was irreversibly blocked by La3+ (added as 200 μm DMN-La3+). The results indicate that the properties of the Na/Ca exchanger can be studied with these electrophysiological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R.H., Chandler, W.K., Hodgkin, A.L. 1970. Voltage clamp experiments in striated muscle fibres. J. Physiol. 208:607–644

    Google Scholar 

  • Ambesi, A., Bagwell, E.E., Lindenmayer, G.E. 1991a. Purification and identification of the cardiac sarcolemmal Na/Ca exchanger. Biophys. J. 59:138a

    Google Scholar 

  • Ambesi, A., VanAlstyne, E.L., Bagwell, E.E., Lindenmayer, G.E. 1991b. Sequential use of detergents for solubilization and reconstitution of a membrane ion transporter. Anal. Biochem. 198:312–317

    Google Scholar 

  • Baker, P.F., Blaustein, M.P., Hodgkin, A.L., Steinhardt, R.A. 1969. The influence of calcium on sodium efflux in squid axons. J. Physiol. 200:431–458

    Google Scholar 

  • Bamberg, E., Apell, H.-J., Dencher, N.A., Sperling, W. Stieve, H., Läuger, P. 1979. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. Mech. 5:277–292

    Google Scholar 

  • Barcenas-Ruiz, L., Beuckelmann, D.J., Wier, W.G. 1987. Sodiumcalcium exchange in heart: membrane currents and changes in [Ca2+]i. Science 328:1720–1722

    Google Scholar 

  • Beaugé, L., DiPolo, R. 1991. Effects of monovalent cations on Na-Ca exchange in nerve cells. Ann. N.Y. Acad. Sci. 639:147–155

    Google Scholar 

  • Blaustein, M.P. 1977. Effects of internal and external cations and of ATP on sodium-calcium exchange in squid axons. Biophys. J. 20:79–111

    Google Scholar 

  • Blaustein, M.P. 1988. Calcium transport and buffering in neurons. Trends Neuronsci. 11:438–443

    Google Scholar 

  • Blaustein, M.P., Russell, J.M. 1975. Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid axons. J. Membrane Biol. 22:285–312

    Google Scholar 

  • Blaustein, M.P., Russell, J.M., De Weer, P. 1974. Calcium efflux from internally dialyzed squid axons: The influence of external and internal cations. J. Supramolec. Struct. 2:558–581

    Google Scholar 

  • Blaustein, M.P., Goldman, W.F., Fontana, G., Krueger, B.K., Santiago, E.M., Steele, T.D., Weiss, D.N., Yarowsky, P.J. 1991. Physiological roles of the sodium-calcium exchanger in nerve and muscle. Ann. N.Y. Acad. Sci. 639:254–274

    Google Scholar 

  • Borlinghaus, R., Apell, HJ., Läuger, P. 1987. Fast charge translocation associated with partial reactions of the NaK pump. I. Current and voltage transients after photochemical release of ATP. J. Membrane Biol. 97:169–178

    Google Scholar 

  • Brommundt, G., Kavaler, F. 1987. La3+, Mn2+, and Ni2+ effects on Ca2+ pump and on Na+-Ca2+ exchange in bullfrog ventricle. Am. J. Physiol. 253:C45-C51

    Google Scholar 

  • Caputo, C., Bezanilla, F., DiPolo, R. 1989. Currents related to the sodium-calcium exchange in squid axon. Biochim. Biophys. Acta 986:250–256

    Google Scholar 

  • Carafoli, E., Stauffer, T. 1994. The plasma membrane calcium pump: Functional domains, regulation of the activity, and tissue specificity of isoform expression. J. Neurobiol. 25:312–324

    Google Scholar 

  • Caroni, P., Reinlib, L., Carafoli, E. 1980. Charge movements during the Na+-Ca2+ exchange in heart sarcolemmal vesicles. Proc. Natl. Acad. Sci. USA 77:6354–6358

    Google Scholar 

  • Cheon, J., Reeves, J.P. 1988. Site density of the Sodium-Calcium exchange carrier in reconstituted vesicles from bovine cardiac sarcolemma. J. Biol. Chem. 263:2309–2315

    Google Scholar 

  • Cook, N.J., Kaupp, U.B. 1988. Solubilization, purification and reconstitution of the sodium-calcium exchanger from bovine retinal rod outer segments. J. Biol. Chem. 263:11382–11388

    Google Scholar 

  • Costantin, L.L. 1977. Activation in striated muscle. In: Handbook of Physiology. The Nervous System Vol. I., pp. 215–259. American Physiological Society, Bethesda, MD

    Google Scholar 

  • Dancshazy, Z., Karvaly, B. 1976. Incorporation of bacteriorhodopsin into bilayer lipid membrane: A photoelectric-spectroscopic study. FEBS Lett. 72:136–138

    Google Scholar 

  • Durkin, J.T., Ahrens, D.C., Pan, Y.-C.E., Reeves, J.P. 1991a. Purification and amino-terminal sequence of the bovine cardiac sodiumcalcium exchanger: evidence for the presence of the a signal sequence. Arch. Biochem. Biophys. 290:369–375

    Google Scholar 

  • Durkin, J.T., Ahrens, D.C., Aceto, J.F., Condrescu, M., Reeves, J.P. 1991b. Molecular and functional studies of the cardiac sodiumcalcium exchanger. Ann. N.Y. Acad. Sci. 639:189–201

    Google Scholar 

  • Eisenrauch, A., Bamberg, E. 1990. Voltage dependent pump currents of the sarcoplasmic reticulum Ca2+-ATPase in planar bilayer membranes. FEBS Lett. 268:152–156

    Google Scholar 

  • Ellis-Davies, G.C.R., Kaplan, J.H. 1988. A new class of photolabile chelators for the rapid release of divalent cations: synthesis of caged Ca and caged Mg. J. Org. Chem. 153:1966–1969

    Google Scholar 

  • Fatt, P., Ginsborg, B.L. 1958. The ionic requirements for the production of action potentials in crustacean muscle fibres. J. Physiol. 142:516–543

    Google Scholar 

  • Fahr, A., Läuger, P., Bamberg, E. 1981. Photocurrent kinetics of purple-membrane sheets bound to planar bilayer membranes. J. Membrane Biol. 60:51–62

    Google Scholar 

  • Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985. Pump currents generated by the purified Na+ K+-ATPase from kidney on black lipid membranes. EMBO J. 4:3079–3085

    Google Scholar 

  • Fontana, G., Rogowski, R.S., Blaustein, M.P. (1995). Kinetic properties of the sodium/calcium exchanger in rat brain synaptosomes. J. Physiol. (in press)

  • Gadsby, D.C., Noda, M., Shepherd, R.N., Nakao, M. 1991. Influence of external nonovalent cations on Na-Ca exchange current-voltage relationships in cardiac myocytes. Ann. N.Y. Acad. Sci. 639:140–146

    Google Scholar 

  • Goldman, W.F., Yarowsky, P.J., Juhaszova, M., Krueger, B.K., Blaustein, M.P. 1994. Sodium/calcium exchange in rat cortical astrocytes. J. Neurosci. 14:5834–5843

    Google Scholar 

  • Hagiwara, S., Chichibu, S., Naka, K. 1964. The effects of various ions on resting and spike potentials of barnacle muscle fibers. J. Gen. Physiol. 48:163–179

    Google Scholar 

  • Hale, C.C., Slaughter, R.S., Ahrens, D.C., Reeves, J.P. 1984. Identification and partial purification of the cardiac sodium-calcium exchange protein. Proc. Natl. Acad. Sci. USA 81:6569–6573

    Google Scholar 

  • Hartung, K., Grell, E., Hasselbach, W., Bamberg, E. 1987. Electrical pump currents generated by the Ca-ATPase of sarcoplasmic reticulum vesicles adsorbed on black lipid membranes. Biochim. Biophys. Acta 900:209–220

    Google Scholar 

  • Hermann, T.R., Rayfield, G.W. 1976. A measurement of the proton current generated by bacteriorhodopsin in black lipid membranes. Biochem. Biophys. Acta 443:623–628

    Google Scholar 

  • Hilgemann, D.W., Collins, A., Cash, D.P., Nagel, G.A. 1991. Cardiac Na+-Ca2+ exchange system in giant membrane patches. Ann. N. Y. Acad. Sci. 639:126–139

    Google Scholar 

  • Kaplan, J.H., Ellis-Davies, G.C.R. 1988. Photolabile chelators for the rapid photorelease of divalent cations. Proc. Natl. Acad. Sci. USA 85:6571–6575

    Google Scholar 

  • Kaplan, R.S., Pedersen, P.L. 1985. Determination of microgram quantities of protein in the presence of milligram levels of lipid with amido black 10B. Anal. Biochem. 150:97–104

    Google Scholar 

  • Kimura, J., Miura, Y. 1988. Effects of intracellular sodium and calcium on sodium-calcium exchange current. J. Mol. Cell Cardiol. 20:S19

    Google Scholar 

  • Kimura, J., Miyamae, S., Noma, A. 1987. Identification of sodiumcalcium exchange current in single ventricular cells of guinea-pig. J. Physiol. 384:199–222

    CAS  PubMed  Google Scholar 

  • Kofuji, P., Lederer, W.J., Schulze, D.H. 1994. Mutually exclusive and cassette exons underlie alternative spliced isoforms of the Na/Ca exchanger. J. Biol. Chem. 269:5145–5149

    Google Scholar 

  • Laemli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Li, Z., Nicoll, D.A., Collins, A., Hilgemann, D.W., Filoteo, A., Penniston, J.T., Weiss, J.N., Tomich, J.M., Philipson, K.D. 1991. Identification of a peptide inhibitor of the cardiac sarcolemmal Na+Ca2+ exchanger. J. Biol. Chem. 266:1014–1020

    Google Scholar 

  • Low, W., Kasir, J., Rahamimoff, H. 1993. Cloning of the rat heart Na+-Ca2+ exchanger and its functional expression in HeLa cells. FEBS Lett. 316:63–67

    Google Scholar 

  • McCray, J.A., Fidler-Lim, N., Ellis-Davies, G.C.R., Kaplan, J.H. 1992. Rate of release of Ca2+ following laser photolysis of the DM-nitrophen-Ca2+ complex. Biochemistry 31:8856–8861

    Google Scholar 

  • Müller, P., Rudin, D.O., Tien, H.T., Wescott, W.C. 1962. Reconstitution of excitable cell membrane structure in vitro. Circulation 26:1167–1171

    Google Scholar 

  • Nicoll, D.A., Longoni, S., Philipson, K.D. 1990. Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250:562–565

    Google Scholar 

  • Nicoll, D.A., Philipson, K.D. 1991. Molecular studies of the cardiac sarcolemmal sodium-calcium exchanger. Ann. N.Y. Acad. Sci. 639:181–188

    Google Scholar 

  • Niggli, E., Lederer, W.J. 1991. Molecular operations of the sodiumcalcium exchanger revealed by conformation currents. Nature 349:621–624

    Article  CAS  PubMed  Google Scholar 

  • Niggli, E., Lederer, W.J. 1993. Activation of Na-Ca exchange current by photolysis of “caged calcium”. Biophys. J. 65:882–891

    CAS  PubMed  Google Scholar 

  • Oakley, B.R., Kirsch, D.R., Morris, N.R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105:361–363

    Google Scholar 

  • Philipson, K.D., McDonough, A.A., Frank, J.S., Ward, R. 1987. Enrichment of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by alkaline extraction. Biochim. Biophys. Acta 899:59–66

    Google Scholar 

  • Philipson, K.D., Longoni, S., Ward, R. 1988. Purification of the Na+Ca2+ exchange protein. Biochim. Biophys. Acta 945:298–306

    Google Scholar 

  • Rahamimoff, H., Spanier, R. 1984. The asymmetric effect of lanthanides on Na+-gradient-dependent Ca2+ transport in synaptic plasma membrane vesicles. Biochem. Biophys. Acta 773:279–289

    Google Scholar 

  • Rasgado-Flores, H., Santiago, E., Blaustein, M.P. 1989. Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells. J. Gen. Physiol. 93:1219–1241

    Google Scholar 

  • Reeves, J.P., Hale, C.C. 1984. The stoichiometry of the cardiac sodium-calcium exchange system. J. Biol. Chem. 259:7733–7739

    CAS  PubMed  Google Scholar 

  • Reeves, J.P., Sutko, J.L. 1983. Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J. Biol. Chem. 258:3178–3182

    Google Scholar 

  • Riddell, F.G., Hayer, M.K. 1985. The monensin-mediated transport of sodium ions through phospholipid bilayers studied by 23Na-NMR spectroscopy. Biochim. Biophys. Acta 817:313–317

    Google Scholar 

  • Ruscak, M., Orlicky, J., Juhaszova, M., Zachar, J. 1987a. Na+-Ca2+ exchange in plasma membranes of crayfish striated muscle. Gen. Physiol. Biophys. 6:469–478

    Google Scholar 

  • Ruscak, M., Juhaszova, M., Orlicky, J., Zachar, J. 1987b. Reconstitution and partial purification of Na+-Ca2+ exchange from crayfish striated muscle plasma membranes. Gen. Physiol. Biophys. 6:523–528

    Google Scholar 

  • Russell, J.M., Blaustein, M.P. 1974. Calcium efflux from barnacle muscle fibers: dependence on external cations. J. Gen. Physiol. 63:144–167

    Google Scholar 

  • Sheu, S.-S., Blaustein, M.P. 1992. Sodium/Calcium exchange and control of cell calcium and contractility in cardiac and vascular smooth muscle. In: The Heart and Cardiovascular System. 2nd Edition. H.A. Fozzard, E.A. Haber, R.B. Jennings, A.M. Katz, H.E. Morgan, editors. pp. 903–943. Raven, New York.

    Google Scholar 

  • Tibbits, G.F., Philipson, K.D. 1985. Na+-dependent alkaline earth metal uptake in cardiac sarcolemmal vesicles. Biochim. Biophys. Acta 817:327–332

    Google Scholar 

  • Towbin, H., Gordon, J. 1984. Immunoblotting and dot immunobinding—current status and outlook. J. Immunol. Methods 72:313–340

    Google Scholar 

  • van der Hijden, H.T.W.M., Grell, E., de Pont, J.J.H.H.M., Bamberg, E. 1990. Demonstration of the electrogenicity of proton translocation during the phosphorylation step in gastric H,K-ATPase. J. Membrane Biol. 114:245–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The technical assistance of Verena Heiselpetz in some experiments is gratefully acknowledged. This work was partly supported by the Deutsche Forschungsgemeinschaft (SFB 169) and by National Institutes of Health grants HL30315 and GM39500 to JHK and HL45215 and NS16106 to MPB. MPB was the recipient of a Senior Scientist Award from the Alexander von Humboldt Stiftung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenrauch, A., Juhaszova, M., Ellis-Davies, G.C.R. et al. Electrical currents generated by a partially purified Na/Ca exchanger from lobster muscle reconstituted into liposomes and adsorbed on black lipid membranes: Activation by photolysis of caged Ca2+ . J. Membarin Biol. 145, 151–164 (1995). https://doi.org/10.1007/BF00237373

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237373

Key words

Navigation