Skip to main content
Log in

Changes in the protein metabolism of the CNS of a teleost following stimulation of the lateral-line organ

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Unilateral stimulation of the lateral-line organ (LLO) of the teleost Scardinius erythrophthalmus by current water caused an increase in the afferent fibre activity in the stimulated organ of about 3.5 times as compared with the non-stimulated LLO.

There was an increase of [3H] histidine incorporation as compared to controls following stimulation applied either at the beginning (1 h) or at the end (1.5–6 h) of various incorporation times.

Following a 1 h stimulation period, the different areas of the LLO-system (lateral nerve, medulla oblongata, cerebellum and valvulae cerebelli), as well as the optic tectum, subtectum and spinal cord showed a significant increase of protein labelling; whereas after 12 h post-incorporation times only the lateral nerve showed highly significant differences as compared to controls.

In animals stimulated at the end of a 12 h pre-incorporation period (1.5–6 h) there was a significant increase of protein labelling in all investigated structures of the brain as compared to controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnes, E.: Two types of lateral line afferents in the eel (Anguella anguilla). Acta physiol. scand. 87, 535–548 (1973a)

    Google Scholar 

  • Alnes, E.: Peripheral inhibition of eel lateral line receptors as caused by antidromic sensory invasion. Acta physiol. scand. 88, 35–48 (1973b)

    Google Scholar 

  • Alnes, E.: Lateral line input to the crista cerebellaris in the eel field potentials and histology. Acta physiol. scand. 88, 49–61 (1973c)

    Google Scholar 

  • Alnes, E.: Unit activity of ganglionic and medullary second order neurones in the eel lateral line system. Acta physiol. scand. 88, 160–174 (1973d)

    Google Scholar 

  • Altman, J.: Differences in the utilisation of tritiated leucine by single neurones in normal and exercisel rats: an autoradiographic investigation with microdensitometry. Nature (Lond.) 199, 777–780 (1963)

    Google Scholar 

  • Aronson, L.R.: The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In:Sharks and survival. (P.W. Gilbert Ed.) Boston: D.C. Heath and Company 1963

    Google Scholar 

  • DeLamater, E., Courtenay, Jr., W.R.: Variations in structure of the lateral-line canal on scales of teleostean fishes. Z. Morphologie der Tiere. 75, 259–266 (1973)

    Google Scholar 

  • Denny, H.: The lateral-line system of teleosts. J. comp. Neurol. 68, 49–65 (1937)

    Google Scholar 

  • Dijkgraaf, S.: The functioning and significance of the lateral-line organs. In: Biological Review of the Cambridge Philosophical Society. Vol. 38. (H.M. Fox Ed.). p. 51–105. Cambridge: University Press 1963

    Google Scholar 

  • Edström, J.E.: Effects of increased motor activity on the dimensions and the staining properties of the neuron soma. J. comp. Neurol. 107, 295–304 (1957)

    Google Scholar 

  • Flock, A.: Ultrastructure and functioning of the lateral line organs. In: Lateral line detectors. (P.H. Calm Ed.) p. 163–197. Bloomington: Indiana University Press 1967

    Google Scholar 

  • Hama, K., Katsuki, Y., Hashimoto, T., Yanagisawa, K.: The lateral-line organ of shark as chemoreceptor. Advance in Biophys. 1, 1–51 (1970)

    Google Scholar 

  • Harris, G.G., Bergeijk, W.A. van: Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J. acoust. Soc. Am. 34, 1831–1841 (1962)

    Google Scholar 

  • Hyden, H., Eghjazi, E.: Nuclear RNA changes of nerve cells during a learning experiment in rats. Proc. nat. Acad. Sci. (Wash.) 48, 1366–1373 (1962)

    Google Scholar 

  • Katsuki, Y., Yoshino, S., Chen, I.: Neural mechanisms of the lateral-line organs of fish. Jap. J. Physiol. 1, 264–268 (1951)

    Google Scholar 

  • Katsuki, Y., Hashimoto, F., Yanagisawa, K.: Information processing in fish lateral-line sense organs. Science (N. Y.) 160, 439 (1968)

    Google Scholar 

  • Katsuki, Y., Hashimoto, T., Kendall, I.I.: The chemoreception in the lateral-line organs of teleosts. Jap. J. Physiol. 21, 99–118 (1971)

    Google Scholar 

  • Kroker, H.: Autoradiographische Untersuchungen über die Protein- und RNS-Synthese im Tectum opticum von Karauschen (Carassius carassius L.) nach Lichtreizung. Z. mikrosk.-anat. Forsch. (Leipzig) 87, 525–543 (1973)

    Google Scholar 

  • Lim, R., Agranoff, B.W.: Protein metabolism in goldfish brain. J. Neurochem. 16, 431–445 (1969)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    CAS  PubMed  Google Scholar 

  • Maler, L.: The Posterior Lateral Line Lobe of a Mormyrid Fish — A Golgi Study. J. comp. Neurology 152, 281–298 (1973)

    Google Scholar 

  • Orrego, F., Lipman, F.: Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids. J. Biol. Chem. 242, 665 (1967)

    Google Scholar 

  • Rahmann, H., Hilbig, R.: Autoradiographische Untersuchungen über Stoffwechselunterschiede in verschiedenen Hirnstrukturen von Teleosteern sowie deren Beinflußbarkeit nach motorischer Stimulation. Z. Zellforsch. 133, 501–518 (1972)

    Google Scholar 

  • Rahmann, H., Rösner, H., Wilhelm, R.: Changes in protein synthesis in fish brain induced by electrical stimulation. IRCS Medial Sciences 3-10-31, 73–11 (1973)

    Google Scholar 

  • Rahmann, H., Jansen, B.: Biochemische Untersuchungen des Proteinstoffwechsels im ZNS von Teleosteern. Univ. Hohenheim/Stuttgart 1975

    Google Scholar 

  • Rahmann, H., Hilbig, R.: Autoradiographische Untersuchungen zum Einfluß von unilateralen Strömungsstimulationen auf den Einbau von 3H-Histidine in die verschiedenen Substrukturen des Seitenlinienorgan-Systems von Teleosteern. Zoolog. Jahrbücher. Abt. Physiol. 71, 518–527 (1975)

    Google Scholar 

  • Rensch, B., Rahmann, H.: Autoradiographische Untersuchungen über visuelle „Engramm”-Bildung bei Zahnkarpfen. Pflügers Arch. 290, 158–166 (1966)

    Google Scholar 

  • Rensch, B., Rahmann, H., Skrzipek, H.: Autoradiographische Untersuchungen über visuelle „Engramm”-Bildung bei Fischen. Pflügers Arch. 304, 242–252 (1968)

    Google Scholar 

  • Roberts, B.L., Russell, I.J.: The Activity of Lateral-Line Efferent Neurones in Stationary and Swimming Dogfish. J. Exp. Biol. 57, 435–448 (1972)

    Google Scholar 

  • Rose, S.P.R.: Neurochemical correlates of learning and environmental changes. FEBS Letters, 5, 305–312 (1969)

    Google Scholar 

  • Russell, I.J., Roberts, B.L.: Inhibition of spontaneous Lateral-Line activity by efferent nerve stimulation J. Exp. Biol. 57, 77–82 (1972)

    Google Scholar 

  • Schacht, J., Agranoff, B.W.: Phospholipid labelling by 32P-orthophosphate, and 3H-myo-inosital in the stimulated goldfish brain in vivo. J. Neurochem. 19, 1417–1421 (1972)

    Google Scholar 

  • Tiplady, B.: Brain protein metabolism and environmental stimulation, effects of forced exercise. Brain Res. 43, 215–225 (1972)

    Google Scholar 

  • Watson, W.E.: An autoradiographic study of the incorporation of nucleic acid precursors by neurones and glia during nerve stimulation. J. Physiol. (Lond.) 180, 741–753 (1965)

    Google Scholar 

  • Wawrzyniak, M.: Chemoarchitektonische Studien am Tectum opticum von Teleosteern unter normalen und experimentellen Bedingungen. Z. Zellforsch. 58, 234–264 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilbig, R., Rahmann, H. Changes in the protein metabolism of the CNS of a teleost following stimulation of the lateral-line organ. Exp Brain Res 26, 249–260 (1976). https://doi.org/10.1007/BF00234930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234930

Key words

Navigation