Skip to main content
Log in

Cerebrospinal fluid-contacting area in the pineal recess of the vole (Microtus agrestis), Guinea Pig (Cavia cobaya), and rhesus monkey (Macaca mulatta)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The ventricular lining in the pineal recess of the vole (Microtus agrestis), guinea pig (Cavia cobaya) and Rhesus monkey (Macaca mulatta) was investigated light and electron microscopically. Deep in the pineal recess of all three species the ependymal lining exhibits interruptions. A varying proportion of pinealocytes penetrates through this ependymal area, so that the surface of the protruding cells is directly exposed to the cerebrospinal fluid (CSF). At their base, these cells are anchored in the hypependymal tissue by means of processes. It is conjectured that these pinealocytes are engaged in secreting pineal substances into the CSF, as various physiological findings appear to indicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anton-Tay F, Wurtman RJ (1969) Regional uptake of H3-melatonin from blood or cerebrospinal fluid by rat brain. Nature (Lond) 221:474–475

    Google Scholar 

  • Card JP, Mitchell JA (1971) Electron microscopic demonstration of a supraependymal cluster of neuronal cells and processes in the hamster third ventricle. J Comp Neurol 180:43–58

    Google Scholar 

  • Collu R, Fraschini F, Martini L (1971) Blockade of ovulation by melatonin. Experientia 27:844–845

    Google Scholar 

  • Fleischhauer K (1972) Ependyma and subependymal layer. In: Bourne GH (ed) The Structure and Function of Nervous Tissue, Academic Press, New York London, Vol. VI

    Google Scholar 

  • Hedlund L, Lischko MM, Rollag MD, Niswender GD (1977) Melatonin: Daily cycle in plasma and cerebrospinal fluid of calves. Science 195:686–687

    CAS  Google Scholar 

  • Hewing M (1978) A liquor contacting area in the pineal recess of the golden hamster (Mesocricetus auratus). Anat Embryol 153:295–304

    Google Scholar 

  • Hoffman RA (1970) The epiphyseal complex in fish and reptiles. Am Zool 10:191–199

    Google Scholar 

  • Ito S, Winchester RJ (1963) The fine structure of the gastric mucosa in the bat. J Cell Biol 16:541–577

    Google Scholar 

  • Kamberi IA, Mical RS, Porter JC (1971) Effects of melatonin and serotonin on the release of FSH and prolactin. Endocrinology 88:1288–1293

    Google Scholar 

  • Kappers Ariëns J (1969) The mammalian pineal organ. J Neuro Visc Rel, Suppl 9:140–184

    Google Scholar 

  • Kappers Ariëns J (1971) The pineal organ: An introduction. In: Wolstenholme GEW, Knight J (eds): The Pineal Gland. A Ciba Foundation symposium. Churchill Livingstone, Edinburgh London

    Google Scholar 

  • Kappers Ariëns J, Smith AR, de Vries RAC (1974) The mammalian pineal gland and its control of hypothalamic activity. Prog Brain Res 41:149–173

    Google Scholar 

  • Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A (ed) Handbuch der mikroskopischen Anatomie des Menschen. Neuroglia I. Springer, Berlin Heidelberg New York, Vol IV/10

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed  Google Scholar 

  • Mess B, Trentini GP, Kovacs L, De Caetini CF (1975) Melatonin, cerebrospinal fluid, pineal gland interrelationships. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-Endocrine Interaction II. The ventricular system in neuroendocrine mechanisms. Karger, Basel

    Google Scholar 

  • Oksche A, Hartwig AG (1975) Photoneuroendocrine systems and the third ventricle. In: Knigge KM, Scott DE, Kobayashi H and Ishii S (eds): Brain-Endocrine Interaction II. The ventricular system in neuroendocrine mechanisms. Karger, Basel

    Google Scholar 

  • Pavel S (1973) Arginine vasotocin release into the cerebrospinal fluid of cats induced by melatonin. Nature 246:183–184

    Google Scholar 

  • Pavel S, Goldstein R (1979) Further evidence that melatonin represents the releasing hormone for pineal vasotocin. J Endocrinol 82:1–6

    Google Scholar 

  • Quay WB (1970) Endocrine effects of the mammalian pineal. Am Zool 10:237–246

    Google Scholar 

  • Quay WB (1973) Retrograde perfusions of the pineal region and the question of pineal vascular routes to brain and choroid plexuses. Am J Anat 137:387–402

    Google Scholar 

  • Quay WB (1974) Pineal Chemistry in Cellular and Physiological Mechanisms. Charles C Thomas, Springfield, Illinois

    Google Scholar 

  • Reiter RJ, Vaughan MK, Blask DE (1975) Possible role of the cerebrospinal fluid in the transport of pineal hormones in mammals. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds): Brain-Endocrine Interaction II. The ventricular system in neuro-endocrine mechanisms. Karger, Basel

    Google Scholar 

  • Reppert SM, Perlow MJ, Tamarkin L, Klein DC (1979) A diurnal melatonin rhythm in primate cerebrospinal fluid. Endocrinology 104:295–301

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez ES (1976) Review. The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol 71:407–443

    Google Scholar 

  • Rollag MD, Morgan RJ, Niswender GD (1978) Route of melatonin in sheep. Endocrinology 102:1–8

    Google Scholar 

  • Scott DE, Krobisch-Dudley G, Paull WK (1977) The ventricular system in neuroendocrine mechanisms. III. Supraependymal neuronal networks in the primate brain. Cell Tissue Res 179:235–254

    Google Scholar 

  • Smith I, Mullen PE, Snedden W, Wilson BW (1976) Absolute identification of melatonin in human plasma and cerebrospinal fluid. Nature (Lond) 260:718–719

    Google Scholar 

  • Tilney F, Warren LF (1919) The morphology and evolutionary significance of the pineal body. Am Anat Mem EX, Wistar Inst. Press, Philadelphia, pp 1–257

    Google Scholar 

  • Vigh B, Vigh-Teichmann I (1973) Comparative ultrastructure of the CSF-contacting neurons. In: Bourne GH, Danielli JF (eds): Int Rev Cytol 35:189–251

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hewing, M. Cerebrospinal fluid-contacting area in the pineal recess of the vole (Microtus agrestis), Guinea Pig (Cavia cobaya), and rhesus monkey (Macaca mulatta). Cell Tissue Res. 209, 473–484 (1980). https://doi.org/10.1007/BF00234759

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234759

Key words

Navigation