Skip to main content
Log in

Pinocytosis and locomotion of amoebae: XII. Dynamics and motive force generation during induced pinocytosis in A. proteus

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The mechanism of induced pinocytosis was investigated in Amoeba proteus by light and electron microscopy. The application of nine different inducing substances revealed that pinocytotic channel formation, elongation, vesiculation, shortening and disappearance are the result of the successive or simultaneous action of both traction and pressure forces, which are produced by the contractile activity of a plasma membrane-associated layer of filaments ranging from a few hundred nm to several μ in thickness. The initial phase of channel formation is caused by traction forces according to the membrane flow concept, whereas channel elongation and vesiculation mainly result from pressure forces in conjunction with the extrusion of small hyaline pseudopodia. Shortening and disappearance of the pinocytotic channels are brought about by local contractions of the cortical filament layer in the basal region of the hyaline pseudopodia. Experiments using latex beads as marker particles together with inducing substances show that a rapid membrane turnover during pinocytosis can be excluded, and that the plasma membrane slides as an entire structure over the underlying cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, H.J., Ault, C., Winzler, R.J., Danielli, J.F.: Chemical characterisation of the isolated cell surface of Amoeba. J. Cell Biol. 60, 26–38 (1974)

    Google Scholar 

  • Allison, A.C.: The role of microfilaments and microtubules in cell movement, endocytosis and exocytosis. In: Locomotion of Tissue Cells: Ciba Found. Symposium, vol. 14, 109–148, Amsterdam, ASP 1973

    Google Scholar 

  • Allison, A.C., Davies, D.: Mechanism of endocytosis and exocytosis. Symp. Soc. Exp. Biol. 28, 419–446 (1974)

    Google Scholar 

  • Allison, A.C., Davies, P., De Petris, S.: Role of contractile microfilaments in movement and endocytosis. Nature New Biol. 232, 153–155 (1971)

    Google Scholar 

  • Bennett, H.S.: The concepts of membrane flow and membrane vesiculation as mechanisms for active transport and ion pumping. J. Biophys. Biochem. Cytol. 2, Suppl., 99–103 (1956)

    Google Scholar 

  • Braatz-Schade, K.: Effects of various substances on cell shape, motile activity and membrane potential in Amoeba proteus. Acta Protozool. 17, 163–176 (1978)

    Google Scholar 

  • Braatz-Schade, K., Stockem, W.: Pinocytose und Bewegung von Amöben. X. Die Bedeutung der Mucoidschicht für die Initialphase der induzierten Endocytose bei Amoeba proteus. Z. Zellforsch. 137, 97–109 (1973)

    Google Scholar 

  • Brandt, P.W., Freeman, A.R.: Plasma membrane: Substructural changes correlated with electrical resistance and pinocytosis. Science 3, 582–585 (1967)

    Google Scholar 

  • Chapman-Andresen, C.: Studies on pinocytosis in amoebae. C.R. Lab. Carlsberg 33, 73–264 (1962)

    Google Scholar 

  • Chapman-Andresen, C.: Endocytotic processes. In: The Biology of Amoeba, pp. 319–348. (K.W. Jeon, ed.) New York: Academic Press 1973

    Google Scholar 

  • Cohn, Z.A.: Endocytosis and intracellular digestion. In: Mononuclear Phagocytosis. pp. 121–132. (R. van Furth, ed.) Oxford 1970

  • Comly, L.T.: Microfilaments in Chaos carolinensis: membrane association, distribution and heavy meromyosin binding in the glycerinated cell. J. Cell Biol. 58, 230–237 (1973)

    Google Scholar 

  • Cooper, B.A.: Quantitative studies on pinocytosis induced in Amoeba proteus by simple cations. C.R. Lab. Carlsberg 36, 385–403 (1968)

    Google Scholar 

  • Fujiwara, K., Porter, M.E., Pollard, T.D.: Alphaactinin localisation in the cleavage furrow during cytokinesis. J. Cell Biol. 79, 268–275 (1978)

    Google Scholar 

  • Govindan, V.M., Rohr, G., Wieland, T., Agostini, G.: Binding of phallotoxin to protein filaments of plasma membrane of liver cells. Hoppe-Seyler's Z. Physiol. Chem. 354, 1159–1161 (1973)

    Google Scholar 

  • Gruenstein, E., Rich, A., Weihing, R.R.: Actin associated with plasma membranes from 3T3 and HeLa cells. J. Cell Biol. 64, 223–234 (1975)

    Google Scholar 

  • Haberey, M., Stockem, W.: Amoeba proteus. Morphologie, Zucht und Verhalten. Mikrokosmos 2, 33–42 (1971)

    Google Scholar 

  • Haberey, M., Stockem, W.: Induced endocytosis in Amoeba proteus. 4th International Congress of Protozoology, Clermont-Ferrand. Actualités Protozoologiques, Vol. 1, p 267. (P. De Puytorac and J. Grain, eds.) Université de Clermont, 1973

  • Hauser, M.: Demonstration of membrane-bound and oriented microfilaments in Amoeba proteus by means of a Schiff-base fixative. Cytobiol. 18, 95–106 (1978)

    Google Scholar 

  • Hendil, K.B.: Ion exchange properties of the glycocalyx of the amoeba Chaos chaos and its relation to pinocytosis. C.R. Lab. Carlsberg 38, 187–211 (1971)

    Google Scholar 

  • Hitchcock, S.E.: Regulation of motility in non-muscle cells. J. Cell Biol. 74, 1–15 (1977)

    Google Scholar 

  • Holter, H.: Problems of pinocytosis, with special regard to amoebae. Ann. N.Y. Acad. Sci. 78, 524–537 (1959)

    Google Scholar 

  • Jacques, P.J.: The endocytotic uptake of macromolecules. Pathobiology of Cell Membranes. Vol. I, pp. 255–280. (B.F. Trump and A.U. Arstila, eds.) New York: Academic Press 1975

    Google Scholar 

  • Josefsson, J.-O.: Induction and inhibition of pinocytosis in Amoeba proteus. Acta Physiol. Scand. 73, 481–490 (1968)

    Google Scholar 

  • Josefsson, J.-O.: Studies on the mechanism of induction of pinocytosis in Amoeba proteus. Acta physiol. scand. Suppl. 432, 1–65 (1975)

    Google Scholar 

  • Josefsson, J.-O., Holmer, N.-G., Hansson, S.E.: Membrane potential and conductance during pinocytosis induced in Amoeba proteus with alkali metal ions. Acta Physiol. Scand. 94, 278–288 (1975)

    Google Scholar 

  • Klein, H.P., Stockem, W.: Pinocytosis and locomotion of amoebae. XIV. Physiological studies on the induction-mechanism of pinocytosis in Amoeba proteus (in preparation)

  • Korn, E.D.: Biochemistry of endocytosis. In: Biochemistry of Cell Walls and Membranes (C.F. Fox, ed.) MTP Int. Rev. of Science. Biochemistry Series I vol. 2, 1–26, London 1975

  • Korn, E.D., Wright, P.L.: Macromolecular composition of an amoeba plasma membrane. J. Biol. Chem. 348, 439–447 (1973)

    Google Scholar 

  • Korohoda, W., Stockem, W.: On the nature of hyaline zones in the cytoplasm of Amoeba proteus. Microsc. Acta 77, 129–144 (1975)

    Google Scholar 

  • Kushida, H.: A styrene-methacrylate resin embedding method for ultrathin sectioning. J. Electronmicr. 10, 16–19 (1961)

    Google Scholar 

  • Lüscher, E.F.: Microfilaments in blood platelets. In: Molecular Basis of Motility. 26th Colloquium Mosbach 1975. pp. 175–185. (L. Heilmeyer, J.C. Rüegg, Th. Wieland, eds.). Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  • Marshall, J.M., Nachmias, V.T.: Cell surface and pinocytosis. J. Histochem. Cytochem. 13, 92–105 (1965)

    Google Scholar 

  • Pollard, T.D.: Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins. In: Molecules and Cell Movement, pp. 259–286. (S. Inoue and R.E. Stevens, eds.) New York: Raven Press 1975

    Google Scholar 

  • Pollard, T.D., Korn, E.D.: Electron microscopic identification of actin associated with isolated amoeba plasma membranes. J. Biol. Chem. 248, 4682–4690 (1973)

    Google Scholar 

  • Schroeder, T.E.: Dynamics of the contractile ring. In: Molecules and Cell Movement, pp. 305–334. (S. Inoue and R.E. Stevens, eds.). New York: Raven Press 1975

    Google Scholar 

  • Stockem, W.: Pinocytose und Bewegung von Amöben. IV. Quantitative Untersuchungen zur permanenten und induzierten Endocytose von Amoeba proteus. Z. Zellforsch. 136, 433–446 (1973)

    Google Scholar 

  • Stockem, W.: Endocytosis. In: Mammalian Cell Membranes 5, 151–195. (G.A. Jamieson and D.M. Robinson, eds.). London: Butterworths 1977

  • Stockem, W.: Cell surface morphology and activity in Amoeba proteus and Physarum polycephalum. 1. Int. Symp. on Cell Motility, 25–29 June 1978 in Warsaw. Acta Protozool. (in press)

  • Stockem, W., Wohlfarth-Bottermann, K.E.: Pinocytosis (endocytosis). In: Handbook of Molecular Cytology, pp. 1373–1400. (A. Lima De Faria, ed.). Amsterdam: North-Holland Publ. Comp. 1969

    Google Scholar 

  • Stockem, W., Komnick, H.: Erfahrungen mit der Styrol-Methacrylateinbettung als Routinemethode für die Licht- und Elektronenmikroskopie. Mikroskopie 26, 199–203 (1970)

    Google Scholar 

  • Stockem, W., Klein, H.P.: Pinocytosis and locomotion in amoebae. XV. Demonstration of Ca++- binding sites during induced pinocytosis in Amoeba proteus (in preparation)

  • Stockem, W., Weber, K., Wehland, J.: The influence of microinjected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization in Amoeba proteus and Physarum polycephalum. Cytobiol. 18, 114–131 (1978)

    Google Scholar 

  • Stossel, T.P.: Endocytosis. In: Receptors and Recognition, Series A, Vol. 4, pp. 103–141. (P. Cuatrecasas and M.F. Greaves, eds.). London: Chapman and Hall 1977

    Google Scholar 

  • Stossel, T.P., Pincus, S.H.: A new actin-binding protein: evidence for its role in endocytosis. Clin. Res. 23, 407 A (Abstr.) 1975

  • Taylor, D.L.: Motile model systems of amoeboid movement. In: Cell Motility. Actin, Myosin and Associated Proteins, pp. 797–821. (R. Goldman, T. Pollard, and J. Rosenbaum, eds.). Cold Spring Harbor Laboratory 1976

  • Tilney, L.G.: The role of actin in nonmuscle cell motility. In: Molecules and Cell Movement, pp. 339–388. (S. Inoue and R.E. Stevens, eds.). New York: Raven Press 1975

    Google Scholar 

  • Tilney, L.G., Mooseker, M.: Actin in the brush border of epithelial cells of the chicken intestine. Proc. Nat. Acad. Sci. USA 68, 2611–2615 (1971)

    Google Scholar 

  • Venable, J.H., Coggeshall, R.: A simplified citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965)

    Google Scholar 

  • Wehland, J., Stockem, W., Weber, K.: Cytoplasmic streaming in Amoeba proteus is inhibited by the actin specific drug phalloidin. Exp. Cell Res. 115, 451–454 (1978)

    Google Scholar 

  • Wehland, J., Weber, K., Gawlitta, W., Stockem, W.: Characteristic changes in cytoplasmic streaming activity and fine structure of Amoeba proteus after microinjection of DNase I. Cell Tissue Res. (in press)

  • Wohlfarth-Bottermann, K.E.: Die Kontrastierung tierischer Zellen und Gewebe im Rahmen ihrer elektronenmikroskopischen Untersuchung an ultradünnen Schnitten. Naturwissenschaften 44, 287–288 (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are most grateful to Mrs. J. Ruch for technical assistance

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, H.P., Stockem, W. Pinocytosis and locomotion of amoebae: XII. Dynamics and motive force generation during induced pinocytosis in A. proteus . Cell Tissue Res. 197, 263–279 (1979). https://doi.org/10.1007/BF00233919

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233919

Key words

Navigation