Skip to main content
Log in

Stable transformation of tomato cell cultures after bombardment with plasmid and YAC DNA

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Stable transformants were obtained after microprojectile particle bombardment of tomato cell suspensions (Lycopersicon esculentum cv VFNT Cherry and L. pennellii). The suspensions were bombarded with tungsten particles coated with either plasmid (∼6.3 kb) or yeast artificial chromosome (YAC) (80 kb) DNA containing the ß-glucuronidase (GUS) and neomycin phosphotransferase II (nptII) genes. The YAC DNA contained an insert of approximately 50 kb of DNA from VFNT Cherry. L. pennellii suspensions were more amenable to transformation than VFNT Cherry; more kanamycin-resistant calli were recovered from L. pennelli after bombardment with plasmid DNA, and only L. pennellii cells produced transformants after bombardment with YAC DNA. DNA gel blot analysis confirmed the presence of the nptll and GUS genes. This analysis also confirmed the integration of YAC DNA into the genome of the kanamycin-resistant calli and suggested that the level of intactness of the integrated YAC DNA was fairly high in four of the five transformants examined. Microprojectile bombardment of regenerable cultures with YACs may ultimately aid in map-based cloning of agriculturally-important genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

YAC:

yeast artificial chromosome

MS:

Murashige and Skoog

2,4-D:

2,4-dichlorophenoxy-acetic acid

IAA:

indole-3-acetic acid

GUS:

ß-glucuronidase

nptII:

neomycin phosphotransferase II

References

  • Bernatzky R (1988) Plant Mol Biol Man C2:1–18

    Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Science 236:806–812

    Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Bio/Technology 9:957–962

    Google Scholar 

  • Chu G, Vollrath D, Davis RW (1986) Science 234:1582–1585

    Google Scholar 

  • Daniell H, Vivekananda J, Nielsen BL, Ye GN, Tewari KK, Sanford JC (1990) Proc Natl Acad Sci USA 87:88–92

    Google Scholar 

  • Datla RSS, Hammerlindl JK, Pelcher LE, Selvaraj G, Crosby WL (1990) J Cell Biochem 14:279

    Google Scholar 

  • Doyle JJ, Dickson EE (1987) TAXON 36:715–722

    Google Scholar 

  • Duchesne LC, Charest PJ (1991) Plant Cell Rep 10:191–194

    Google Scholar 

  • Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Bio/Technology 11:84–89

    Google Scholar 

  • Ganal MW, Martin GB, Messeguer R, Tanksley SD (1990) AgBiotech News and Information 2:835–840

    Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WRJ, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Lemaux PG (1990) The Plant Cell 2:603–618

    Google Scholar 

  • Hille J, Koornneef M, Ramanna MS, Zabel P (1989) Euphytica 42:1–23

    Google Scholar 

  • Jefferson RA, Kavanaugh TA, Bevan MW (1987) EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Science 236:1299–1302

    Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Proc Natl Acad Sci 85:8502–8505

    Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) Nature 327:70–73

    Google Scholar 

  • Lonsdale D, Onde S, Cuming A (1990) J Exp Bot 41:1161–1165

    Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Science 262:1432–1436

    CAS  PubMed  Google Scholar 

  • Martin GB, Ganal MW, Tanksley SD (1992) Mol Gen Genet 233:25–32

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nitsch JP (1969) Phytomorphology 19:389–404

    Google Scholar 

  • Potrykus, I (1990) Bio/Technology 8:535–542

    Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992a) In Vitro Cell Dev Biol 28P:97–105

    Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992b) Plant Physiol 98:1050–1056

    Google Scholar 

  • Sanford JC, DeVit MJ, Russell JA, Smith FD, Harpending PR, Roy MK, Johnston SA (1991) Technique 3:3–16

    Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Particulate Sci Technol 5:27–37

    Google Scholar 

  • Shark KB, Smith FD, Harpending PR, Rasmussen JL, Sanford JC (1991) Appl Environ Microbiol 57:480–485

    Google Scholar 

  • Smith DR, Smyth AP, Moir DT (1990) Proc Natl Acad Sci USA 87:8242–8246

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovanonni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder M, Wing RA, Wu W, Young ND (1992) Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Tomes DT, Weissinger AK, Ross M, Higgins R, Drummond BJ, Schaaf S, Malone-Schoneberg J, Staebell M, Flynn P, Anderson J, Howard J (1990) Plant Mol Biol 14:261–268

    Google Scholar 

  • Van Eck JM (1993) Ph. D. Dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Bio/Technology 10:667–674

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.J. Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Eck, J.M., Blowers, A.D. & Earle, E.D. Stable transformation of tomato cell cultures after bombardment with plasmid and YAC DNA. Plant Cell Reports 14, 299–304 (1995). https://doi.org/10.1007/BF00232032

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232032

Keywords

Navigation