Skip to main content
Log in

An assessment of proposed similarity theories for the atmospheric boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The various similarity theories proposed for the atmospheric boundary layer (ABL) are critically examined in the light of some recent atmospheric observations as well as the results of numerical modeling experiments. For the surface layer, the theory proposed by Monin and Obukhov (1954) is still the best, although by no means perfect. For the whole ABL, the older Kazanski-Monin (1961) similarity theory is found to be less satisfactory, and must be replaced by the generalized version of Deardorff's (1972a) hypothesis, which considers the effects of varying boundary-layer height, latitude, stability, and baroclinicity. The latter presents no conceptual or mathematical difficulties when applied to low latitudes. The free convection similarity scaling is valid only for certain turbulent quantities, under well-developed convection. The “shear convection” hypothesis of Zilitinkevich (1973) for the surface layer, as well as its extension for the whole ABL, are found wanting on both theoretical and physical grounds, and lead to unrealistic predictions about the turbulence structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arya, S. P. S.: 1975, Comments on “Similarity Theory for the Planetary Boundary Layer of Time-Dependent Height”. J. Atmos. Sci. 32, 839–840.

    Google Scholar 

  • Arya, S. P. S. and Wyngaard, J. C.: 1975, Effect of Baroclinicity on Wind Profiles and the Geostrophic Drag Law for the Convective Planetary Boundary Layer. J. Atmos. Sci. 32, 767–778.

    Google Scholar 

  • Augstein, E., Schmidt, H., and Ostapoff, F.: 1974, The Vertical Structure of the Atmospheric Planetary Boundary Layer in Undisturbed Trade Winds over the Atlantic Ocean. Boundary-Layer Meteorol. 6, 129–150.

    Google Scholar 

  • Bernstein, A.: 1966, A New Dimensional Approach to the Problem of Flux-Gradient Relationships near the Ground. Quart. J. Roy. Meteorol. Soc. 92, 560–566.

    Google Scholar 

  • Busch, N. E.: 1973, On the Mechanics of Atmospheric Turbulence. Workshop in Micrometeorology, American Meteorol. Soc., Boston, Mass., 1–65.

    Google Scholar 

  • Businger, J. A. and Arya, S. P. S.: 1974, Height of the Mixed Layer in the Stably Stratified Planetary Boundary Layer. Advances in Geophysics, Academic Press, 18A, 73–92.

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, Flux Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Calder, K. L.: 1967, A Criticism of Bernstein's New Dimensional Approach to the Flux-Gradient Relationships near the Ground. Quart. J. Roy. Meteorol Soc. 93, 544–551.

    Google Scholar 

  • Carson, D. J.: 1973, The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer. Quart. J. Roy. Meteorol. Soc. 99, 450–467.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, The Wangara Experiment: Boundary Layer Data, Technical Paper No. 19, CSIRO, Div. Met. Phys., 362 pp.

  • Clarke, R. H., and Hess, G. D.: 1973, On the Appropriate Scaling for Velocity and Temperature in the Planetary Boundary Layer. J. Atmos. Sci. 30, 1346–1353.

    Google Scholar 

  • Deardorff, J. W.: 1970a, Preliminary Results from Numerical Integrations of the Unstable Planetary Boundary Layer. J. Atmos. Sci. 27, 1209–1211.

    Google Scholar 

  • Deardorff, J. W.: 1970b, Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection. J. Atmos. Sci. 27, 1211–1213.

    Google Scholar 

  • Deardorff, J. W.: 1972a, Numerical Investigation of Neutral and Unstable Planetary Boundary Layers. J. Atmos. Sci. 29, 91–115.

    Google Scholar 

  • Deardorff, J. W.: 1972b, Parameterization of the Planetary Boundary Layer for Use in General Circulation Models. Mon. Wea. Rev. 100, 93–106.

    Google Scholar 

  • Deardorff, J. W.: 1974, Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer. Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Gray, W. M.: 1972, A Diagnostic Study of the Planetary Boundary Layer over the Oceans. Atmos. Sci. Paper No. 179, Colorado State University, 95 pp.

  • Hess, G. D.: 1973, On Rossby-Number Similarity Theory for a Baroclinic Planetary Boundary Layer. J. Atmos. Sci. 30, 1722–1723.

    Google Scholar 

  • Huntley, H. E.: 1952, Dimensional Analysis. Macdonald & Co., London. (Also Dover Publications, Inc., New York, 1966.)

    Google Scholar 

  • Izumi, Y.: 1971, Kansas 1968 Field Program Data Report, Environmental Research Papers, No. 379, AFCRL-72-0041, 79 pp.

  • Kazanski, A. B., and Monin, A. S.: 1961, On the Dynamical Interaction between the Atmosphere and the Earth's Surface. Izv. Akad. Nauk SSSR, Ser. Geofiz. No. 5, 786–788.

    Google Scholar 

  • Lettau, H. H.: 1959, Wind Profile, Surface Stress and Geostrophic Drag Coefficients in the Atmospheric Surface Layer. Advances in Geophysics, Academic Press, 6, 241–257.

  • Melgarejo, J. W., and Deardorff, J. W.: 1974, Stability Functions for the Boundary-Layer Resistance Laws Based Upon Observed Boundary-Layer Heights. J. Atmos. Sci. 31, 1324–1333.

    Google Scholar 

  • Melgarejo, J. W., and Deardorff, J. W.: 1975, Revision to “Stability Functions for the Boundary-Layer Resistance Laws Based upon Observed Boundary-Layer Heights”. J. Atmos. Sci. 32, 837–839.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, Basic Laws of Turbulent Mixing in the Atmosphere Near the Ground. Tr. Akad. Nauk SSSR, Geofiz. Inst. 151, 163–187.

    Google Scholar 

  • Monin, A. S. and Zilitinkevich, S. S.: 1974, Similarity Theory and Resistance Laws for the Planetary Boundary Layer. Boundary-Layer Meteorol. 7, 391–397.

    Google Scholar 

  • Obukhov, A. M.: 1946, Turbulence in an Atmosphere with a Non-Uniform Temperature. Tr. Akad. Nauk SSSR Inst. Teoret. Geofiz. No. 1 (Engl. transl. in Boundary-Layer. Meteorol. 2, 7–29).

  • Priestley, C. H. B.: 1954, Convection from a Large Horizontal Surface. Australian J. Phys. 6, 279–290.

    Google Scholar 

  • Stull, R. B.: 1975, Temperature Inversions Capping Atmospheric Boundary Layers. Ph.D. Dissertation, University of Washington, 218 pp.

  • Sundararajan, A.: 1975, Mean Reynolds Stress Modeling of the Atmospheric Boundary Layer Ph.D. Dissertation, University of Washington, 150 pp.

  • Tennekes, H.: 1970, Free Convection in the Turbulent Ekman Layer of the Atmosphere. J. Atmos. Sci. 27, 1027–1034.

    Google Scholar 

  • Townsend, A. A.: 1965, Self-Preserving Flow Inside a Turbulent Boundary Layer. J. Fluid Mech. 22, 773–797.

    Google Scholar 

  • Vorob'yev, V. I.: 1969, The Influence of Non-stationarity and Baroclinicity on the Turbulence Pattern in the Atmospheric Boundary Layer. Izv. Atmos. Ocean. Phys. 5, 56–69.

    Google Scholar 

  • Wyngaard, J. C.: 1973, On Surface Layer Turbulence. Workshop in Micrometeorology, American Met. Soc., Boston, Mass.. 101–149.

    Google Scholar 

  • Wyngaard, J. C.: 1975, Modeling of the Planetary Boundary Layer — Extension to the Stable Case. Boundary-Layer Meteorol. 9, 441–460.

    Google Scholar 

  • Wyngaard, J. C., Coté, O. R., and Izumi, Y.: 1971, Local Free Convection Similarity and the Budgets of Shear Stress and Heat Flux. J. Atmos. Sci. 28, 1171–1182.

    Google Scholar 

  • Wyngaard, J. C., Arya, S. P. S., and Coté, O. R.: 1974a, Some Aspects of the Structure of Convective Planetary Boundary Layers. J. Atmos. Sci. 31, 747–754.

    Google Scholar 

  • Wyngaard, J. C., Coté, O. R., and Rao, K. S.: 1974b, Modeling of the Atmospheric Boundary Layer. Advances in Geophys., 18A, Academic Press, New York, 193–211.

    Google Scholar 

  • Yordanov, D. and Wippermann, F.: 1972, The Parameterization of the Turbulent Fluxes of Momentum, Heat and Moisture at the Ground in a Baroclinic Planetary Boundary Layer. Beitr. Phys. Atmos. 45, 58–65.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, On the Determination of the Height of the Ekman Boundary Layer. Boundary-Layer Meteorol. 3, 144–145.

    Google Scholar 

  • Zilitinkevich, S. S.: 1973, Shear Convection. Boundary-Layer Meteorol. 3, 416–423.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, Resistance Laws and Prediction Equations for the Depth of the Planetary Boundary Layer. J. Atmos. Sci. 32, 741–752.

    Google Scholar 

  • Zilitinkevich, S. S., and Deardorff, J. W.: 1974, Similarity Theory for the Planetary Boundary Layer of Time-Dependent Height. J. Atmos. Sci. 31, 1449–1452.

    Google Scholar 

  • Zilitinkevich, S. S. and Monin, A. S.: 1974, Similarity Theory for the Atmospheric Boundary Layer. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 10, 587–599.

    Google Scholar 

  • Zilitinkevich, S. S., Laikhtman, D. L., and Monin, A. S.: 1967, Dynamics of the Atmospheric Boundary Layer. Izv. Atmos. Ocean. Phys. 3, 170–191 (English Ed.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 350, Department of Atmospheric Sciences, University of Washington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arya, S.P.S., Sundararajan, A. An assessment of proposed similarity theories for the atmospheric boundary layer. Boundary-Layer Meteorol 10, 149–166 (1976). https://doi.org/10.1007/BF00229282

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229282

Keywords

Navigation