Skip to main content
Log in

An ultrastructural in vitro study on the regulation of neurosecretory activity in the freshwater snail Lymnaea stagnalis (L.) with particular reference to Caudo-dorsal cells

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The neurosecretory Caudo-Dorsal Cells (CDC) in the cerebral ganglia of the freshwater pulmonate snail Lymnaea stagnalis produce an ovulation stimulating hormone. Previously it has been shown that neuronal and non-neuronal inputs are involved in the regulation of their activity.

The degree of autonomy of these cells has been investigated by studying with morphometric methods the ultrastructure of CDC maintained in vitro. CDC of isolated cerebral ganglia which were cultured for 7 days show a considerable rate of synthesis, transport and release of neurohormone. Apparently these processes can proceed in the absence of neuronal and hormonal inputs from outside the cerebral ganglia. Completely isolated CDC, however, do not show neurosecretory activity in vitro; active Golgi zones, indicating the formation of neurosecretory elementary granules, are absent from such cells. Isolation does not seem to affect general cell functions such as protein synthesis and respiration. It is suggested that a neuronal input, originating within the cerebral ganglia, is necessary for the stimulation of CDC neurosecretory activity.

Techniques are described for the isolation and culture of neurosecretory cells of L. stagnalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avruch, J., Price, H.D., Martin, D.B., Carter, J.R.: Effects of low levels of trypsin on erythrocyte membranes. Biochim. biophys. Acta (Amst.) 291, 494–505 (1973)

    Google Scholar 

  • Bailey, T.G.: The in vitro culture of reproductive organs of the slug Agriolimax reticulatus (Müll.). Neth. J. Zool. 23, 72–85 (1973)

    Google Scholar 

  • Barker, J.L., Crayton, J.W., Nicoll, R.A.: Supraoptic neurosecretory cells: adrenergic and cholinergic activity. Science 171, 208–210 (1971)

    Google Scholar 

  • Barker, J.L., Ifshin, M.S., Gainer, H.: Studies on bursting pacemaker potential activity in molluscan neurons. III. Effects of hormones. Brain Res. 84, 501–513 (1975)

    Google Scholar 

  • Beiswanger, C.M., Jacklet, J.W.: In vitro tests for a circadian rhythm in the electrical activity of a single neuron in Aplysia californica. J. comp. Physiol. A 103, 19–37 (1975)

    Google Scholar 

  • Bliss, C.I.: Statistics in biology. I. New York: McGraw-Hill Book Co. 1967

    Google Scholar 

  • Boer, H.H., Douma, E., Koksma, J.M.A.: Electron microscope study of neurosecretory cells and neurohaemal organs in the pond snail Lymnaea stagnalis L. Symp. zool. Soc. Lond. 22, 237–256 (1968)

    Google Scholar 

  • Borg, T.K., Marks, E.P.: Ultrastructure of the median neurosecretory cells of Manduca sexta in vivo and in vitro. J. Insect Physiol. 19, 1913–1920 (1973)

    Google Scholar 

  • Burch, J.B., Cuadros, C.: A culture medium for snail cells and tissues. Nature (Lond.) 206, 637–638 (1965)

    Google Scholar 

  • Chen, C.F., Baumgarten, F. von, Taneda, R.: Pacemaker properties of completely isolated neurons in Aplysia californica. Nature (Lond.) 233, 27–29 (1971)

    Google Scholar 

  • Choquet, M.: Étude du cycle biologique et de l'inversion du sexe chez Patella vulgata L. (Mollusque Gastéropode Prosobranche). Gen. comp. Endocr. 16, 59–73 (1971)

    Google Scholar 

  • Cohen, M.J., Jacklet, J.W.: Neurons of insects: RNA changes during injury and regeneration. Science 148, 1237–1239 (1965)

    Google Scholar 

  • Cook, D.J., Milligan, J.V.: Electrophysiology and histology of the medial neurosecretory cells in adult male cockroaches, Periplaneta americana. J. Insect Physiol. 18, 1197–1214 (1972)

    Google Scholar 

  • Dellmann, H.-D.: Degeneration and regeneration of neurosecretory systems. Int. Rev. Cytol. 40, 215–315 (1975)

    Google Scholar 

  • Eggena, P., Polson, A.X.: Osmotic stimulation of vasotocin secretion by the toad's hypothalamoneurohypophyseal system. Endocrinology 94, 35–44 (1974)

    Google Scholar 

  • Gainer, H.: Electrophysiological behavior of an endogenously active neurosecretory cell. Brain Res. 39, 403–418 (1972)

    Google Scholar 

  • Geletyuk, V.I., Veprintsev, B.N.: Electrical properties of neurons of the mollusc Lymnaea stagnalis under conditions of tissue culture. Tsitologiya 14, 1133–1139 (1972)

    Google Scholar 

  • Geraerts, W.P.M.: Studies on the endocrine control of growth and reproduction in the hermaphrodite pulmonate snail Lymnaea stagnalis. Thesis. Utrecht: Drukkerij Elinkwijk 1975

    Google Scholar 

  • Gianfelici, E.: Différenciation in vitro du complexe cérébro-endocrinien chez Calliphora erythro cephala. Ann. Endocr. (Paris) 29, 496–500 (1968)

    Google Scholar 

  • Gubicza, A., S.-Rózsa, K.: Identification of central neurons innervating the heart of Lymnaea stagnalis L. (Gastropoda). Ann. Biol. Tihany 36, 3–10 (1969)

    Google Scholar 

  • Guyard, A., Gomot, L.: Survie et différenciation de la gonade juvénile d'Helix aspersa en culture organotypique. Bull. Soc. Zool. Fr. 89, 48–56 (1964)

    Google Scholar 

  • Hayward, J.N., Jennings, D.P.: Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys. II. Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone. J. Physiol. (Lond.) 232, 545–572 (1973)

    Google Scholar 

  • Hodges, G.M., Livingston, D.C., Franks, L.M.: The localization of trypsin in cultured mammalian cells. J. Cell Sci. 12, 887–902 (1973)

    Google Scholar 

  • Joosse, J.: Dorsal bodies and dorsal neurosecretory cells of the cerebral ganglia of Lymnaea stagnalis L. Arch. néerl. Zool. 16, 1–103 (1964)

    Google Scholar 

  • Kostenko, M.A., Geletyuk, V.I., Veprintsev, B.N.: Completely isolated neurons in the mollusc, Lymnaea stagnalis. A new objective for nerve cell biology investigation. Comp. Biochem. Physiol. 49 A, 89–100 (1974)

    Google Scholar 

  • Kostenko, M.A., Veprintsev, B.N.: The cultivation of nerve tissue of an adult mollusc Lymnaea stagnalis in organ cultures in vitro. Tsitologiya 14, 1392–1397 (1972)

    Google Scholar 

  • Le Gall, S., Streiff, W.: Présence du facteur morphogénétique du pénis au niveau des ganglions pédieux chez des mollusques prosobranches hermaphrodites (Crepidula, Calyptraea) et gonochoriques (Littorina, Buccinum). C.R. Acad. Sci. (Paris) 279, 183–186 (1974)

    Google Scholar 

  • Lever, J., Joosse, J.: On the influence of the salt content of the medium on some special neurosecretory cells in the lateral lobes of the cerebral ganglia of Lymnaea stagnalis. Proc. kon. ned. Akad. Wet. C64, 630–639 (1961)

    Google Scholar 

  • Lickey, M.E.: Seasonal modulation and non-24-h entrainment of a circadian rhythm in a single neuron. J. comp. physiol. Psychol. 68, 9–17 (1969)

    Google Scholar 

  • Loud, A.V., Barany, W.C., Pack, B.A.: Quantitative evaluation of cytoplasmic structures in electron micrographs. Lab. Invest. 14, 258–270 (1965)

    Google Scholar 

  • McLaughlin, B.J., Howes, E.A.: Structural connections between dense core vesicles in the central nervous system of Anodonta cagnea L. (Mollusca, Eulamellibranchia). Z. Zellforsch. 144, 75–88 (1973)

    Google Scholar 

  • Nagasawa, K., Douglas, W.W., Schulz, R.A.: Micropinocytotic origin of coated and smooth microvesicles (synaptic vesicles) in neurosecretory terminals of posterior pituitary glands demonstrated by incorporation of horseradish-peroxidase. Nature (Lond.) 232, 341–342 (1971)

    Google Scholar 

  • Novikoff, P.M., Novikoff, A.B., Quintana, N., Hauw, J.-J.: Golgi apparatus, GERL and lysosomes of neurons in rat dorsal root ganglia studied by thick section and thin section cytochemistry. J. Cell Biol. 50, 859–886 (1971)

    Google Scholar 

  • Roubos, E.W.: Regulation of neurosecretory activity in the freshwater pulmonate Lymnaea stagnalis (L.). A quantitative electron microscopical study. Z. Zellforsch. 146, 177–205 (1973)

    Google Scholar 

  • Roubos, E.W.: Regulation of neurosecretory activity in the freshwater pulmonate Lymnaea stagnalis (L.) with particular reference to the role of the eyes. Cell Tiss. Res. 160, 291–314 (1975)

    Google Scholar 

  • Roubos, E.W.: Neuronal and non-neuronal control of the neurosecretory Caudo-Dorsal Cells of the freshwater snail Lymnaea stagnalis (L.). Cell Tiss. Res. 168, 11–31 (1976)

    Google Scholar 

  • Sachs, H., Goodman, R., Osinchak, J., McKelvy, J.: Supraoptic neurosecretory neurons of the guinea pig in organ culture. Biosynthesis of vasopressin and neurophysin. Proc. nat. Acad. Sci. (Wash.) 68, 2782–2786 (1971)

    Google Scholar 

  • Salánki, J., Gubicza, A.: RNA in the ganglia of Mollusca in normal conditions and following nerve damage (a histochemical study). Ann. Biol. Tihany 34, 73–83 (1967)

    Google Scholar 

  • Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality. Biometrika 52, 591–611 (1965)

    Google Scholar 

  • Sminia, T.: Structure and function of blood and connective tissue cells of the freshwater pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Z. Zellforsch. 130, 497–526 (1972)

    Google Scholar 

  • Steen, W.J. Van der, Van den Hoven, N.P., Jager, J.C.: A method for breeding and studying freshwater snails under continuous water change, with some remarks on growth and reproduction in Lymnaea stagnalis (L.). Neth. J. Zool. 19, 131–139 (1969)

    Google Scholar 

  • Wendelaar Bonga, S.E.: Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnaea stagnalis (L.). Z. Zellforsch. 108, 190–224 (1970)

    Google Scholar 

  • Wendelaar Bonga, S.E.: Formation, storage, and release of neurosecretory material studied by quantitative electron microscopy in the freshwater snail Lymnaea stagnalis (L.). Z. Zellforsch. 113, 490–517 (1971a)

    Google Scholar 

  • Wendelaar Bonga, S.E.: Osmotically induced changes in the activity of neurosecretory cells located in the pleural ganglia of the freshwater snail Lymnaea stagnalis (L.), studied by quantitative electron microscopy. Neth. J. Zool. 21, 127–158 (1971b)

    Google Scholar 

  • Young, D., Ashhurst, D.E., Cohen, M.J.: The injury response of the neurones of Periplaneta americana. Tissue and Cell 2, 387–398 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Dr. H.H. Boer for his stimulating interest and valuable criticism during the study and the preparation of the manuscript, Prof. Dr. J. Lever for reading the manuscript, Dr. N.H. Runham (Bangor) for technical advice, Dr. J.C. Jager for statistical advice, Mr. C. Lakeman for technical assistance, and Miss Benita E.C. Plesch for correcting the English text

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roubos, E.W., Van Minnen, J., Wijdenes, J. et al. An ultrastructural in vitro study on the regulation of neurosecretory activity in the freshwater snail Lymnaea stagnalis (L.) with particular reference to Caudo-dorsal cells. Cell Tissue Res. 174, 201–219 (1976). https://doi.org/10.1007/BF00222159

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222159

Key words

Navigation