Skip to main content
Log in

Utility of scaled chrysophytes for inferring lakewater pH in northern New England lakes

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Scaled chrysophytes in the surface sediments of 58 soft-water northern New England lakes were analyzed to assess their usefulness for inferring pH. The distributions of many taxa are correlated with lakewater pH and associated variables. Canonical correspondence analysis (CCA) and clustering grouped chrysophyte taxa according to their distributions along the pH gradient. For example, Chrysodidymus synuroideus, Mallomonas hindonii, and M. hamata commonly occur in acidic waters (pH<5.5), whereas M. caudata and M. pseudocoronata are common in circumneutral to alkaline waters. Of the five predictive models developed to infer pH, CCA based calibration had the lowest standard error (0.35 pH units). A CCA based predictive model was also developed to infer total alkalinity. The study provides strong evidence that, in the absence of past measured pH data, stratigraphic studies of sedimentary chrysophyte scales will provide accurate reconstructions of pH in northern New England lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AsmundB., 1955. Electron microscope observations on Mallomonas caudata and some remarks on its occurrence in four Danish ponds. Bot. Tidsskr. 52: 163–168.

    Google Scholar 

  • AsmundB., 1959. Electron microscope observation on Mallomonas species and remarks on their occurrence in some Danish ponds and lakes. III. Dan. Bot. Ark. 18: 1–50.

    Google Scholar 

  • AsmundB., 1968. Studies on the Chrysophyceae from some ponds and lakes in Alaska. VI. Occurrence of Synura species. Hydrobiologia 31: 497–515.

    Google Scholar 

  • Asmund, B. & E. Kristiansen, 1986. The genus Mallomonas (Chrysophyceae). Opera Bot. 85: 128 p.

  • AsmundB. & E.Takahashi, 1969. Studies on Chrysophyceae from some ponds and lakes in Alaska VIII. Separatum 34: 305–321.

    Google Scholar 

  • BattarbeeR. W., 1973. A new method for the estimation of absolute microfossil numbers, with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.

    Google Scholar 

  • BattarbeeR. W., G.Cronberg & S.Lowry, 1980. Observations on the occurrence of scales and bristles of Mallomonas species (Chrysophyceae) in the microlaminated sediments of a small lake in Finnish north Karelia. Hydrobiologia 71: 225–232.

    Google Scholar 

  • CharlesD. F., 1984. Recent pH history of Big Moose Lake (Adirondack Mountains, New York, USA) inferred from sediment diatom assemblages. Verh. int. Ver. Limnol. 22: 559–566.

    Google Scholar 

  • CharlesD. F., 1985. Relationships between surface sediment diatom assemblages and lake water characteristics in Adirondack lakes. Ecology 66: 994–1011.

    Google Scholar 

  • CharlesD. F. & D. R.Whitehead (eds), 1986. Paleoecological Investigation of Recent Acidification: Methods and Project Description. Report # EA-4906, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • CharlesD. F. & J. P.Smol, 1988. New methods for using diatoms and chrysophytes to reconstruct past lakewater pH. Limnol. Oceanogr. 33: 1451–1462.

    Google Scholar 

  • ChristieC. E., J. P.Smol, P.Huttunen & J.Meriläinen, 1988. Chrysophyte scales recorded in lake sediments from eastern Finland. Hydrobiologia 161: 237–243.

    Google Scholar 

  • CronbergG. & J.Kristiansen, 1980. Synuraceae and other Chrysophyceae from central Småland, Sweden. Bot. Notiser 133: 595–618.

    Google Scholar 

  • DavisR. B. & D. S.Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia 120: 69–87.

    Google Scholar 

  • DavisR. B. & F.Berge, 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments II. Diatom stratigraphy and inferred pH. In D.Drabløs & A.Tollan (eds.), Ecological Impact of Acid Precipitation. S.N.S.F. Project, Oslo, Norway: 270–271.

    Google Scholar 

  • DavisR. B., S. A.Norton, C. T.Hess & D. F.Brakke, 1983. Paleolimnological reconstruction of the effects of atmospheric deposition of acids and heavy metals on the chemistry and biology of lakes in New England and Norway. Hydrobiologia 103: 113–123.

    Google Scholar 

  • DavisR. B., S. A.Norton, J. S.Kahl, D. S.Anderson, L.Bacon, G.Blake, M.Morrison, B.Patterson, M. C.Whiting, R. A.Hites, L. A.Roll, M. J.Mitchell, J. S.Owen, S. C.Schindler, J. P.Smol & S. S.Dixit, 1989. A comparative limnological study of the impacts of air pollution on three northern New England lakes: preliminary results. In Paleoecological Investigation of Recent Lake Acidification (PIRLA): 1983–1985, D. F.Charles & D. R.Whitehead (eds). Report # EN-6526, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • Dixit, S. S., 1986a. Algal microfossils and geochemical reconstructions of Sudbury lakes: A test of the paleo-indicator potential of diatoms and chrysophytes. Ph. D. Thesis, Queen's Univ., Kingston, Ontario.

  • DixitS. S., 1986b. Diatom-inferred pH calibration of lakes near Wawa, Ontario. Can. J. Bot. 64: 1129–1133.

    CAS  PubMed  Google Scholar 

  • DixitA. S. & S. S.Dixit, 1989. Surface sediment chrysophytes from 35 Quebec lakes and their usefulness in reconstructing lakewater pH. Can. J. Bot. 67: 2071–2076.

    Google Scholar 

  • DixitS. S., A. S.Dixit & R. D.Evans, 1987. Paleolimnological evidence of recent acidification in two Sudbury (Canada) lakes. Sci. Total Envir. 67: 53–67.

    Google Scholar 

  • DixitS. S., A. S.Dixit & R. D.Evans, 1988a. Scaled chrysophytes (Chrysophyceae) as indicators of pH in Sudbury Ontario lakes. Can. J. Fish. Aquat. Sci. 45: 1411–1421.

    Google Scholar 

  • DixitS. S., A. S.Dixit & R. D.Evans, 1988b. Chrysophyte scales in lake sediments provide evidence of recent acidification in two Quebec (Canada) lakes. Wat. Air Soil Pollut. 38: 97–104.

    Google Scholar 

  • DixitS. S., A. S.Dixit & R. D.Evans, 1988c. Sedimentary diatom assemblages and their utility in computing diatom-inferred pH in Sudbury Ontario lakes. Hydrobiologia 169: 135–148.

    Google Scholar 

  • DixitS. S., A. S.Dixit & J. P.Smol, 1989. Relationship between chrysophyte assemblages and environmental variables in seventy-two Sudbury lakes as examined by canonical correspondence analysis (CCA). Can. J. Fish. aquat. Sci. 46: 1667–1676.

    Google Scholar 

  • DixonW. J. & W. B.Brown, 1979. Biomedical Computer Programs, P-series. Univ. California, Los Angeles, 880 p.

    Google Scholar 

  • DürrschmidtM., 1980. Studies on the Chrysophyceae from Rio Cruces, Prov. Valdivia, South Chile by Scanning and Transmission microscopy. Nova Hedwigia 33: 353–388.

    Google Scholar 

  • DürrschmidtM., 1984. Studies on scale-bearing Chrysophyceae from the Giessen area, Federal Republic of Germany. Nord. J. Bot. 4: 123–143.

    Google Scholar 

  • DuthieH. C., M. L.Ostrofsky & D. J.Brown, 1976. Freshwater algae from western Labrador IV. Chrysophyta, Xanthophyta, Pyrrophyta, Cryptophyta. Nova Hedwigia 27: 909–1017.

    Google Scholar 

  • FlowerR. J. & R. W.Battarbee, 1983. Diatom evidence of recent acidification of two Scottish lakes. Nature 305: 130–133.

    Google Scholar 

  • FordJ., 1986. The recent history of a naturally acidic lake (Cone Pond, N.H.). In J. P.Smol, R. W.Battarbee, R. B.Davis & J.Meriläinen (eds.), Diatoms and Lake Acidity. Junk, Dordrecht, The Netherlands: 131–148.

    Google Scholar 

  • GibsonK. A., J. P.Smol & J.Ford, 1987. Chrysophycean microfossil provide new insight into recent history of a naturally acidic lake (Cone Pond, New Hampshire). Can. J. Fish. aquat. Sci. 44: 1584–1588.

    Google Scholar 

  • HillM. O., 1979. A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell Ecology Programs, Cornell Univ., Ithaca, N.Y., 52 p.

    Google Scholar 

  • HillM. O. & H. G.Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    CAS  PubMed  Google Scholar 

  • HustedtF., 1939. Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra. Archiv für Hydrobiologie Suppl. 16: 1–155, 274–394.

    Google Scholar 

  • JongmanR. H. G., C. J. F.terBraak & O. F. R.vanTongeren, 1987. Data analysis in community and landscape ecology. Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, 299 p.

    Google Scholar 

  • Kling, H. J. & S. K. Holmgren, 1972. Species composition and seasonal distribution in the Experimental Lakes Area, northwestern Ontario. Env. Can. Fish. Res. Bd. Canada. F.R.B. Report 337, 56 p.

  • KlingH. & J.Kristiansen, 1983. Scale bearing Chrysophyceae (Mallomonadaceae) from central and northern Canada. Nord. J. Bot. 3: 269–290.

    Google Scholar 

  • KristiansenJ., 1975. On the occurrence of the species of Synura (Chrysophyceae). Verb. int. Ver. Limnol.. 19: 2709–2715.

    Google Scholar 

  • KristiansenJ., 1979. Problems in classification and identification of Synuraceae (Chrysophyceae). Schweiz Z. Hydrobiol. 40: 310–319.

    Google Scholar 

  • KristiansenJ., 1981. Distribution problems in the Synuraceae (Chrysophyceae). Verh. int. Ver. Limnol. 21: 1444–1448.

    Google Scholar 

  • KristiansenJ., 1985. Occurrence of scale-bearing Chrysophyceae in a eutrophic Danish lake. Verh. int. Ver. Limnol. 22: 2826–2829.

    Google Scholar 

  • KristiansenJ., 1986. Identification, ecology, and distribution of scale-bearing Chrysophyceae, a critical approach. In J.Kristiansen & R. A.Anderson (eds.), Chrysophytes: Aspects and Problems. Cambridge Univ. Press, New York: 229–239.

    Google Scholar 

  • NichollsK. H., 1980. A reassessment of Chrysosphaerella longispina and C. multispina, and a revised key to related genera in the Synuraceae (Chrysophyceae). Pl. Syst. Evol. 135: 95–106.

    Google Scholar 

  • NichollsK. H., 1982. Mallomonas species (Chrysophyceae) from Ontario, Canada including description of two new species. Nova Hedwigia 36: 89–124.

    Google Scholar 

  • NichollsK. H., 1987. The distinction between Mallomonas acaroides and Mallomonas acaroides var. muskokana var nov. (Chrysophyceae). Can. J. Bot. 65: 1779–1784.

    Google Scholar 

  • NichollsK. H., 1988. Description of three new species of Mallomonas (Chrysophyceae): M. hexgonis, M. liturata, and M. galeiformis. B. Phycol. J. 23: 159–166.

    Google Scholar 

  • NichollsK. H. & J. F.Gerrath, 1985. The taxonomy of Synura (Chrysophyceae) in Ontario with special reference to taste and odour in water supplies. Can. J. Bot. 63: 141–154.

    Google Scholar 

  • PéterfiL. S. C., 1967. Studies on the Rumanian Chrysophyceae (I). Nova Hedwigia 13: 117–137.

    Google Scholar 

  • RoijackersK. M. M. & H.Kessels, 1986. Ecological characteristics of scale-bearing chrysophyceae from the Netherlands. Nord. J. Bot. 6: 373–385.

    Google Scholar 

  • SiverP. A., 1987. The distribution and variation of Synura species (Chrysophyceae) in Connecticut, U.S.A.. Nord. J. Bot. 7: 107–116.

    Google Scholar 

  • SiverP. A., 1988a. Distribution of scaled chrysophytes in 17 Adirondack (New York) lakes with special reference to pH. Can. J. Bot. 66: 1391–1403.

    Google Scholar 

  • SiverP. A., 1988b. Morphology and ecology of Mallomonas galeiformis, a potentially useful paleolimnological indicator. Trans. Am. Micros. Soc. 107: 152–161.

    Google Scholar 

  • SiverP. A. & J. S.Chock, 1986. Phytoplankton dynamics in a chrysophycean lake. In J.Kristiansen & R. A.Anderson (eds.), Chrysophytes: Aspects and Problems. Cambridge Univ. Press, New York: 165–183.

    Google Scholar 

  • SiverP. A. & A.Skogstad, 1988. Morphological variation and ecology of Mallomonas crassisquama. Nord. J. Bot. 8: 99–107.

    Google Scholar 

  • SiverP. A. & J. S.Hamer, 1989. Multivariate statistical analysis of the factors controlling the distribution of scaled chrysophytes. Limnol. Oceanogr. 34: 368–381.

    Google Scholar 

  • SmolJ. P., 1980. Fossil synuracean (Chrysophyceae) scales in lake sediments: a new group of paleoindicators. Can. J. Bot. 58: 458–465.

    Google Scholar 

  • SmolJ. P., 1986. Chrysophycean microfossils as indicators of lakewater pH. In J. P.Smol, R. W.Battarbee, R. B.Davis and J.Meriläinen (eds.), Diatoms and Lake Acidity. Junk, Dordrecht, The Netherlands: 257–287.

    Google Scholar 

  • SmolJ. P., D. F.Charles & D. R.Whitehead, 1984a. Mallomonadacean microfossils provide evidence for recent lake acidification. Nature 307: 628–630.

    Google Scholar 

  • SmolJ. P., D. F.Charles & D. R.Whitehead, 1984b. Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (N.Y.) lakes. Can. J. Bot. 62: 611–630.

    Google Scholar 

  • SmolJ. P., R. W.Battarbee, R. B.Davis & J.Meriläinen (eds.), 1986. Diatoms and Lake Acidity. Junk, Dordrecht, The Netherlands. 307 p.

    Google Scholar 

  • SteinbergC. & H.Hartmann, 1986. A biological paleoindicator for early lake acidification: Mallomonadacean (Chrysophyceae) scale abundance in sediments. Naturwissenschaften 73: 137–139.

    Google Scholar 

  • StevensonA. C., H. J. B.Birks, R. J.Flower & R. W.Battarbee, 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18: 228–233.

    Google Scholar 

  • TakahashiE., 1978. Electron Microscopical Studies of the Synuraceae (Chrysophyceae) in Japan, Taxonomy and Ecology. Tokai Univ. Press, Tokyo. 194 p.

    Google Scholar 

  • Tarapehak, S. J., 1973. Studies on phytoplankton distribution and indicators of trophic state in Minnesota lakes. Ph. D. Thesis, Univ. Minnesota.

  • terBraakC. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • terBraakC. J. F., 1987a. CANOCO—a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.0). TNO Institute of Applied computer Science, Statistical Department Wageningen, 6700 AC Wageningen, The Netherlands.

    Google Scholar 

  • terBraakC. J. F., 1987b. The analysis of vegetation-environment relationship by canonical correspondence analysis. Vegetatio 69: 79–87.

    Google Scholar 

  • WeeJ. L., 1982. Studies on silica-scaled chrysophytes from Iowa. H. Common Synura species. Proc. Iowa Acad. Sci. 88: 70–73.

    Google Scholar 

  • WeeJ. L., 1982. Studies on the Synuraceae (Chrysophyceae) of Iowa. J. Cramer, Hirschberg. 183 p.

    Google Scholar 

  • WrightR. F. & E. T.Gjessing, 1976. Acid precipitation: changes in the chemical composition of lakes. Ambio 5: 219–223.

    Google Scholar 

  • WujekD. E. & R.Hamilton, 1972. Studies on Michigan Chrysophyceae. I. Michigan Botanist 11: 51–59.

    Google Scholar 

  • WujekD. E. & J. L.Wee, 1983. Chrysodidymus in the United States. Trans. Am. Microsc. Soc. 102: 77–80.

    Google Scholar 

  • WujekD. F. & J. L.Wee, 1984. New, rare, and unusual algae from Montana. Northw. Sci. 58: 213–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is the sixth of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D.F. Charles and D.R. Whitehead are guest editors for this series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixit, S.S., Smol, J.P., Anderson, D.S. et al. Utility of scaled chrysophytes for inferring lakewater pH in northern New England lakes. J Paleolimnol 3, 269–286 (1990). https://doi.org/10.1007/BF00219462

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219462

Key words

Navigation