Skip to main content
Log in

Construction of a YAC contig and an STS map spanning 3.6 megabase pairs in Xp22.1

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We have constructed a 3.6 Mb sequence tagged sites (STS)-based yeast artificial chromosome (YAC) contig, consisting of 58 individual YAC clones, spanning the region PDHA1 and DXS451 on Xp22.1. In addition to establishing the order of PDHA1, ISPK-1, DXS2504, DXS1528 and the 13 known polymorphic loci as Xpter — PDHA1 — DXS443 — DXS3424 — ISPK-1 — DXS1229 — DXS2504 — DXS1528 — DXS365 — DXS7101 — DXS1683 — DXS1052 — DXS274 — DXS92 — DXS1226 — DXS41 — DXS989 — DXS451 — Xcen, we have also developed 35 novel STSs from YAC end clones. These results provide a high density of STS markers (approximately 1 per 70 kb). Furthermore, a detailed long-range restriction map of the contig has been constructed with rare-cutter enzymes and this has refined and verified the physical distances between markers inferred from YAC sizes and their STS content. The integration of the physical mapping data with previous genetic mapping data and the use of STSs and non-chimeric YAC clones reported here should facilitate the construction of a transcript map of this region and the positional cloning of disease genes in this portion of Xp22.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alitalo T, Francis F, Kere J, Lehrach H, Schlessinger D, Willard HF (1995) A 6 Mb YAC contig in Xp22.1-p22.2 spanning the DXS69E, XE59, GLRA2, PIGA, GRPR, CALB3, and PHKA2 genes. Genomics 25:691–700

    Google Scholar 

  • Anand R, Riley JH, Butler R, Smith JC, Markham AF (1990) A 3.5 genome equivalent multi access YAC library: construction, characterisation, screening and storage. Nucleic Acids Res 18:1951–1956

    Google Scholar 

  • Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U.S.A. 90:11995–11999

    Google Scholar 

  • Biancalana V, Trivier E, Weber C, Weissenbach J, Rowe PSN, O'Riordan JLH, Partington MW, Heyberger S, Oudet C, Hanauer A (1994) Construction of a high-resolution linkage map for Xp22.1-p22.2 and refinement of the genetic localisation of the Coffin-Lowry syndrome gene. Genomics 22:617–625

    Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Google Scholar 

  • Bird AP (1987) CpG-rich islands as gene markers in the vertebrate nucleus. Trends Genet 3:342–347

    Google Scholar 

  • Bjorbaek C, Vik TA, Echwald SM, Yang PY, Vestergaard H, Wang JP, Webb GC, Richmond K, Hansen T, Erikson RL, Gabor-Miklos GL, Cohen PT, Pedeson O (1995) Cloning of a human insulin-stimulated protein kinase-1 (ISPK-1) gene and analysis of coding regions and mRNA levels of the ISPK-1 gene and the protein phosphatase-1 genes in muscles from NIDDM patients. Diabetes 44:90–97

    Google Scholar 

  • Brown RM, Dahl H-HM, Brown GK (1989) X chromosome localisation of the functional gene of the E1 alpha subunit of the human pyruvate dehydrogenase complex. Genomics 4:174–181

    Google Scholar 

  • Browne D, Barker D, Litt M (1992) Dinucleotide polymorphisms at the DXS365, DXS443 and DXS451 loci. Hum Mol Genet 1:213

    Google Scholar 

  • Butler R, Ogilvie DJ, Elvin P, Riley JH, Finniear RS, Slynn G, Morten JEN, Markham AF, Anand R (1992) Walking, cloning and mapping with yeast artificial chromosomes: contig encompassing D21S13 and D21S16. Genomics 12:42–51

    Google Scholar 

  • Carle GF, Olson MV (1985) An electrophoretic karyotype for yeast. Proc Natl Acad Sci USA 82:3756–3760

    Google Scholar 

  • Cohen D, Chumakov I, Weissenbach J (1993) A first generation physical map of the human genome. Nature 366:698–701

    Google Scholar 

  • Collins FS (1992) Positional cloning: let's not call it reverse any more. Nature genet 1:3–6

    Google Scholar 

  • Den Dunnen JT, Van Der Wielen MJR, Voorhoeve E, Bakker E, Van Ommen GJB, Oosterwijk JC (1994) Fine mapping of keratosis spinulosa decalvans (KFSD) in Xp22. Cytogenet Cell Genet 67:336, S24

    Google Scholar 

  • Econs MJ, Rowe PSN, Francis F, Barker DF, Speer MC, Norman M, Fain PR, Weissenbach J, Read A, Davies KE, Becker PA, Lehrach H, O'Riordan J, Drezner MK (1994) Fine structure mapping of the human X-linked hypophosphataemic rickets gene locus. J Clin Endocrinol Metab 79:1351–1354

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Francis F, Rowe PSN, Econs MJ, Gee See C, Benham F, O'Riordan JLH, Drezner MK, Hamvas RMJ, Lehrach H (1993) A YAC contig spanning the hypophosphataemic rickets disease gene (HYP) candidate region. Genomics 21:229–237

    Google Scholar 

  • Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, Marc S, Bernardi G, Lathrop M, Weissenbach J (1994) The 1993–1994 Genethon human genetic linkage map. Nature Genet 7:246–339

    Google Scholar 

  • Hendrickx J, Coucke P, Hors-Cayla M-C, Smit GPA, Shin YS, Deutsch J, Smeitink J, Berger R, Lee P, Fernandes J, Willems PJ (1994) Localisation of a new type of X-linked liver glycogenosis to the chromosomal region Xp22 containing the liver alpha-subunit of phosphorylase kinase (PHKA2). Genomics 21:620–625

    Google Scholar 

  • Heuertz E, Smahi A, Hors-Cayla MC (1994) Mapping of the Xp22 region surrounding the gene responsible for spondyloepiphyseal dysplasia. Cytogenet Cell Genet 67:340, S38

    Google Scholar 

  • Imai T, Olson MV (1990) Second generation approach to the construction of yeast artificial-chromosome libraries. Genomics 8:297–303

    Google Scholar 

  • Ingle C, Williamson R, Chapelle A de la, Herva RR, Haapala K, Bates G, Willard HF, Pearson P, Davies KE (1985) Mapping DNA sequences in a human X chromosome deletion which extends across the region of the Duchenne muscular dystrophy mutation. Am J Hum Genet 37:451–462

    Google Scholar 

  • Kere J, Nagaraja R, Mumm S, Ciccodicolo A, D'Urso M, Sclessinger D (1992) Mapping human chromosomes by walking with sequence-tagged sites from end fragments of yeast artificial chromosome inserts. Genomics 14:241–248

    Google Scholar 

  • Larionov V, Graves J, Kouprina N, Resnick MA (1994 a) The role of recombination and RAD52 in mutations of chromosomal DNA transformed into yeast. Nucleic Acids Res 22:4234–4241

    Google Scholar 

  • Larionov V, Kouprina N, Nikolaishvili N, Resnick MA (1994b) Recombination during transformation as a source of chimeric mammalian artificial chromosomes in yeast (YACs). Nucleic Acids Res 22:4154–4162

    Google Scholar 

  • Lee JT, Murgai A, Sosnoski DM, Olivos IM, Nussbaum RL (1992) Construction and characterisation of a YAC library for Xpter-Xq27.3: a systematic determination of the cocloning rate and X chromosome representation. Genomics 12:526–533

    Google Scholar 

  • Mohandas T, Sparkes RS, Hellkuhl K, Grzeschik KH, Shapiro LJ (1980) Expression of an X-linked gene from an inactive human-chromosome in mouse-human hybrid cells: further evidence for the non-inactivation of the steroid sulphatase locus in man. Proc Natl Acad Sci USA 77:6759–6763

    Google Scholar 

  • Nagaraja R, Kere J, MacMillan S, Masisi MWJ, Johnson D, Molini BJ, Halley GR, Wein K, Trusnich M, Eble B, Railey B, Brownstein BH, Schlessinger D (1994) Characterisation of four human YAC libraries for clone size, chimerism, and X chromosome sequence representation. Nucleic Acids Res 22:3406–3411

    Google Scholar 

  • Old J (1986) Fetal DNA analysis. In: Davies KE (ed) Human genetic disease: a practical approach. IRL, Oxford, pp 1–17

    Google Scholar 

  • Parkinson DB, Thakker RV (1992) A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nature Genet 1:149–152

    Google Scholar 

  • Partington MW, Mulley JC, Sutherland GR, Hockey A, Thode A, Turner G (1988) X-linked mental retardation with dystonic movements of the hands. Am J Med Genet 30:251–262

    Google Scholar 

  • Porteous DJ, Morten JEN, Cranston G, Fletcher JM, Mitchell A, Van Heyningen V, Fantes JA, Boyd PA, Hastie ND (1986) Molecular and physical arrangements of human DNA in HRAS1-selected chromosome-mediated transfectants. Mol Cell Biol 6:2223–2232

    Google Scholar 

  • Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith JC, Markham AF (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 18:2887–2890

    Google Scholar 

  • Rowe PSN, Goulding J, Read A, Mountford R, Hanauer A, Oudet C, Whyte MP, Meier Ewert S, Lehrach H, Davies KE, O'Riordan JLH (1993) New markers for linkage analysis of X linked hypophosphataemic rickets. Hum Genet 91:571–575

    Google Scholar 

  • Rowe PSN, Goulding J, Read A, Lehrach H, Francis F, Hanauer A, Oudet C, Biancalana V, Kooh SW, Davies KE, O'Riordan JLH (1994) Refining the genetic map for the region flanking the X-linked hypophosphataemic rickets locus (Xp22.1–22.2). Hum Genet 93:291–294

    Google Scholar 

  • Scheinman SJ, Pook MA, Wooding C, Pang JT, Frymoyer PA, Thakker RV (1993) Mapping the gene causing X-linked recessive nephrolithiasis to Xp11. 22 by linkage studies. J Clin Invest 91:2351–2357

    Google Scholar 

  • Smith CL, Klco SR, Cantor CR (1988) Pulsed-field gel electrophoresis and the technology of large DNA molecules. In: Davies KE (ed) Genome analysis: a practical approach. IRL, Oxford, pp 41–72

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Thakker RV, Davies KE, Read AP, Tippett P, Wooding C, Flint T, Wood S, Kruse TA, Whyte MP, O'Riordan JLH (1990) Linkage analysis of two cloned DNA sequences, DXS197 and DXS207, in hypophosphataemic rickets families. Genomics 8:189–193

    Google Scholar 

  • Van Den Vosse E, Meerchoek EJ, Van Ommen GJB, Den Dunnen JT (1994) Construction of a YAC contig in the human Xp22. 1 region. Cytogenet Cell Genet 67:336, S25

    Google Scholar 

  • Wieacker P, Davies KE, Cooke HJ, Pearson PL, Williamson R, Bhattacharya S, Zimmer J, Ropers HH (1984) Towards a complete linkage map of the human X chromosome: regional assignment of 17 cloned single copy DNA sequences employing a panel of somatic cell hybrids. Am J Hum Genet 36:265–276

    Google Scholar 

  • Willard HF, Cremers F, Mandel JL, Monaco AP, Nelson DL, Schlessinger D (1994) Report of the 5th International Workshop on Human X Chromosome Mapping 1994. Cytogenet Cell Genet 67:295–358

    Google Scholar 

  • Willems PJ, Hendrickx J, Van Der Auwera BJ, Vits L, Raeymaekers P, Coucke PJ, Van Der Bergh I, Berger R, Smit GPA, Van Broeckhoven C, Kilimann MW, Van Elson AF, Fernandes JF (1991) Mapping of the gene for X-linked liver glycogenosis due to phophorylase kinase deficiency to human chromosome region Xp22. Genomics 9:565–569

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trump, D., Pilia, G., Dixon, P.H. et al. Construction of a YAC contig and an STS map spanning 3.6 megabase pairs in Xp22.1. Hum Genet 97, 60–68 (1996). https://doi.org/10.1007/BF00218834

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218834

Keywords

Navigation