Skip to main content
Log in

Volatile fatty acids as indicators of process imbalance in anaerobic digestors

  • Environmental Biotechnology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In continuously stirred tank reactor experiments, with manure as substrate at thermophilic temperatures, the use of volatile fatty acids (VFA) as process indicators was investigated. Changes in VFA level were shown to be a good parameter for indicating process instability. The VFA were evaluated according to their relative changes caused by changes in hydraulic loading, organic loading or temperature. Butyrate and isobutyrate together were found to be particularly good indicators. Butyrate and isobutyrate concentrations increased significantly 1 or 2 days after the imposed perturbation, which makes these acids suitable for process monitoring and important for process control of the anaerobic biological system. In addition it was shown in a batch experiment that VFA at concentrations up to 50 mM did not reduce the overall methane production rate. This showed that VFA accumulation in anaerobic reactors was the result of process imbalance, not the cause of inhibition, thus justifying the use of VFA as process indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahring BK, Westermann P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic co-culture. Appl Environ Microbiol 54:2393–2397

    Google Scholar 

  • Allison JM (1978) Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl Environ Microbiol 35:872–877

    Google Scholar 

  • Angelidaki I, Ahring BK (1994) Anaerobic digestion of manure at different ammonia loads: effect of temperature. Water Res 28:727–731

    Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates, focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166

    Google Scholar 

  • Boone DR (1980) Terminal reactions in the anaerobic digestion of animal waste. Appl Environ Microbiol 43:57–64

    Google Scholar 

  • Chen YR, Day CL (1986) Effect of temperature change on stability of thermophilic fermentation of swine waster. Agricul Wastes 16:313–317

    Google Scholar 

  • Chynoweth DP, Mah RA (1971) Anaerobic biological treatment processes. Adv Chem Sci 105:41–53

    Google Scholar 

  • Clesceri LS, Greenberg AE, Trussel RR et al (1985) Standard methods for the examination of water and waste water. American Public Health Association, Washington, DC

    Google Scholar 

  • Fischer JR, Iannotti EL, Porter JH (1983) Anaerobic digestion of swine manure at various influent concentrations. Biol Wastes 6:147–166

    Google Scholar 

  • Gorris LGM, Deursen JMA van, Drift C van der, Vogels GD (1989) Inhibition of propionate degradation by acetate in methanogenic fluidized bed reactors. Biotechnol Lett 11:61–66

    Google Scholar 

  • Gourdon R, Vermande P (1987) Effects of propionic acid and concentration on anaerobic digestion of pig manure. Biomass 13:1–12

    Google Scholar 

  • Gujer W, Nehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    Google Scholar 

  • Hill DT (1982) A comprehensive dynamic model for animal waste methanogenesis. Trans ASAE 25:1374–1380

    Google Scholar 

  • Hill DT, Bolte JP (1989) Digester stress as related to iso-butyric and iso-valeric acids. Biol Wastes 28:33–37

    Google Scholar 

  • Hill DT, Holmberg RD (1988) Long chain volatile fatty acid relationships in anaerobic digestion of swine waste. Biol Wastes 23:195–214

    Google Scholar 

  • Hill DT, Cobb SA, Bolte JP (1987) Using volatile fatty acid relationships to predict anaerobic digester failure. Trans ASAE 30:496–501

    Google Scholar 

  • Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    Google Scholar 

  • Lovley DR, Klug MJ (1982) Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl Environ Microbiol 43:552–560

    Google Scholar 

  • McCarty PL, McKinney RE (1961) Volatile acid toxicity in anaerobic digestion. J Water Control Fed 33:223–232

    Google Scholar 

  • McInerney MJ, Bryant MP, Stafford DA (1980) Metabolic stages and energetics of microbial anaerobic digestion. In: Stafford DA, Wheatley BI, Hudges DE (eds) Anaerobic digestion. Applied Science, London, pp 91–98

    Google Scholar 

  • Mosey FE, Fernandes XA (1984) Mathematical modelling of methanogenesis in sewage sludge digestion. Microbiol Methods Environ Biotechnol 159–169

  • Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132

    Google Scholar 

  • Switzenbaum MS, Giraldo-Gomez E, Hickey RF (1990) Monitoring of the anaerobic methane fermentation process. Enzyme Microb Technol 12:722–730

    Google Scholar 

  • Tholozan JL, Samain E, Grivet JP (1988) Isomerization between n-butyrate and isobutyrate in enrichment cultures. FEMS Microbiol Ecol 53:187–191

    Google Scholar 

  • Varel VH, Isaacson HR, Bryant MP (1977) Thermophilic methane production from cattle waste. Appl Environ Microbiol 33:298–307

    Google Scholar 

  • Wu WM, Thiele JH, Jain MK, Zeikus JG (1993) Metabolic properties and kinetics of methanogenic granules. Appl Microbiol Biotechnol 39:804–811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahring, B.K., Sandberg, M. & Angelidaki, I. Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol 43, 559–565 (1995). https://doi.org/10.1007/BF00218466

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218466

Keywords

Navigation