Skip to main content
Log in

Combined use of 13C chemical shift and 1Hα13Cα heteronuclear NOE data in monitoring a protein NMR structure refinement

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A large portion of the 13C resonance assignments for murine epidermal growth factor (mEGF) at pH 3.1 and 28°C has been determined at natural isotope abundance. Sequence-specific 13C assignments are reported for 100% of the assignable Cα, 96% of the Cβ, 86% of the aromatic and 70% of the remaining peripheral aliphatic resonances of mEGF. A good correlation was observed between experimental and back-calculated Cα chemical shifts for regions of regular β-sheet structure. These assignments also provide the basis for interpreting 1Hα13Cα heteronuclear NOE (HNOE) values in mEGF at natural isotope abundance. Some of the backbone polypeptide segments with high internal mobility, indicated by these 1Hα13Cα HNOE measurements, correlate with locations of residues involved in the putative mEGF-receptor binding site. Using four families of mEGF structures obtained over the last few years, we demonstrate that standard deviations between experimental and back-calculated ΔδCα values can be used to monitor the refinement of this protein's structure, particularly for β-sheet regions. Improved agreement between calculated and observed values of ΔδCα is correlated with other measures of structure quality, including lowered values of residual constraint violations and more negative values of conformational energy. These results support the view that experimental conformation-dependent chemical shifts, ΔδCα, can provide a reliable source of information for monitoring the process of protein structure refinement and are potentially useful restraints for driving the refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HSQC:

heteronuclear single-quantum coherence spectroscopy

PFG:

pulsed-field gradient

TOCSY:

1H-1H total correlation spectroscopy

EGF:

epidermal growth factor

mEGF:

murine EGF

hEGF:

human EGF

hTGFα:

human type-α transforming growth factor

DIPSI:

spm-locking pulse sequence

NOE:

nuclear Overhauser effect

HNOE:

heteronuclear Overhauser effect

References

  • Akke, M., Brüschweiler, R. and Palmer, A.G. (1993) J. Am. Chem. Soc., 115, 9832–9833.

    Google Scholar 

  • Allerhand, A., Doddrell, D. and Komoroski, R. (1971) J. Chem. Phys., 55, 189–198.

    Google Scholar 

  • Anglister, J., Grzesiek, S., Wang, A.C., Ren, H., Klee, C.B. and Bax, A. (1994) Biochemistry, 33, 3540–3547.

    Google Scholar 

  • Baron, M., Norman, D.G., Harvey, T.S., Handford, P.A., Mayhew, M., Tse, A.G.D., Brownlee, G.G. and Campbell, I.D. (1992) Protein Sci., 1, 81–90.

    Google Scholar 

  • Bodenhausen, G. and Ruben, D. (1980) Chem. Phys. Lett., 69, 185–189.

    Google Scholar 

  • Braun, W. and Gō, N. (1985) J. Mol. Biol., 186, 611–626.

    Google Scholar 

  • Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M. (1983) J. Comput. Chem., 4, 187–217.

    Google Scholar 

  • Brown, S.C., Mueller, L. and Jeffs, P.W. (1989) Biochemistry, 28, 593–599.

    Google Scholar 

  • Bruccoleri, R.E. and Karplus, M. (1987) Biopolymers, 26, 137–168.

    Google Scholar 

  • Burgess, A.W. (1989) Br. Med. Bull. 45, 401–424.

    Google Scholar 

  • Campbell, I.D. and Bork, P. (1993) Curr. Opin. Struct. Biol. 3, 385–392.

    Google Scholar 

  • Campion, S.R., Biamonti, C., Montelione, G.T. and Niyogu, S.K. (1993) Protein Eng., 6, 651–659.

    Google Scholar 

  • Celda, B. and Montelione, G.T. (1993) J. Magn. Reson. Ser. B, 101, 189–193.

    Google Scholar 

  • Constantine, K.L., Friedrichs, M.S. and Mueller, L. (1994) J. Magn. Reson. Ser. B, 104, 62–68.

    Google Scholar 

  • Cooke, R.M., Wilkinson, A.J., Baron, M., Pastore, A., Tappin, M.J., Campbell, I.D., Gregory, H. and Sheard, B. (1987) Nature 327, 339–341.

    Google Scholar 

  • deDios, A.C., Pearson, J.G. and Oldfield, E. (1993a) Science, 260, 1491–1496.

    Google Scholar 

  • deDios, A.C., Pearson, J.G. and Oldfield, E. (1993b) J. Am. Chem. Soc., 115, 9768–9773.

    Google Scholar 

  • Engler, D.A., Campion, S.R., Hauser, M.R., Cook, J.S. and Niyogi, S.K. (1992) J. Biol. Chem., 267, 2274–2281.

    Google Scholar 

  • Garrett, D.S., Lodi, P.J., Shamoo, Y., Williams, K.R., Clore, G.M. and Gronenborn, A.M. (1994) Biochemistry, 33, 2852–2858.

    Google Scholar 

  • Graves, B.J., Crowther, R.L., Chandran, C., Rumberger, J.M., Li, S., Huang, K.-S., Presky, D.H., Familletti, P.C., Wolitzky, B.A. and Burns, D.K. (1994) Nature, 367, 532–538.

    Google Scholar 

  • Guerin, M., Gabillot, M., Mathieu, M.-C., Travagli, J.-P., Spielmenn, M., Andrieu, N. and Riou, G. (1989) Int. J. Cancer, 43, 201–208.

    Google Scholar 

  • Hansen, A.P., Petros, A.M., Meadows, R.P., Nettesheim, D.G., Mazar, A.P., Olejniczak, E.T., Xu, R.X., Pederson, T.M., Henkin, J. and Fesik, S.W. (1994) Biochemistry 33, 4847–4864.

    Google Scholar 

  • Hansen, P.E. (1991) Biochemistry, 30, 10457–10466.

    Google Scholar 

  • Harvey, T.S., Wilkinson, A.J., Tappin, M.J., Cooke, R.M. and Campbell, I.D. (1991) Eur. J. Biochem., 198, 555–562.

    Google Scholar 

  • Heinz, D.W., Hyberts, S.G., Peng, J.W., Priestle, J.P., Wagner, G. and Grütter, M.G. (1992) Biochemistry, 31, 8755–8766.

    Google Scholar 

  • Hommel, U., Dudgeon, T.J., Fallon, A., Edwards, R.M. and Campbell, I.D. (1991) Biochemistry, 30, 8891–8898.

    Google Scholar 

  • Hommel, U., Harvey, T.S., Driscoll, P.C. and Campbell, I.D. (1992) J. Mol. Biol., 227, 271–282.

    Google Scholar 

  • Ikura, T. and Gō, N. (1993) Proteins, 16, 423–436.

    Google Scholar 

  • Kessler, H., Schmieder, P. and Bermel, W. (1990) Biopolymers, 30, 465–475.

    Google Scholar 

  • Kline, T.P., Brown, F.K., Brown, S.C., Jeffs, P.W., Kopple, K.D. and Mueller, L. (1990) Biochemistry, 29, 7805–7813.

    Google Scholar 

  • Kohda, D. and Inagaki, F. (1988) J. Biochem., 103, 554–571.

    Google Scholar 

  • Kohda, D. and Inagaki, F. (1992a) Biochemistry, 31, 677–685.

    Google Scholar 

  • Kohda, D. and Inagaki, F. (1992b) Biochemistry, 31, 11928–11939.

    Google Scholar 

  • Kohda, D., Shimada, I., Miyake, T., Fuwa, T. and Inagaki, F. (1989) Biochemistry, 28, 953–958.

    Google Scholar 

  • Laws, D.D., deDios, A.C. and Oldfield, E. (1993) J. Biomol. NMR, 3, 607–612.

    Google Scholar 

  • Lee, M.S., Palmer, A.G. and Wright, P.E. (1992) J. Biomol NMR, 2, 307–322.

    Google Scholar 

  • Li, Y.-C. (1994) Ph.D. Thesis, Rutgers University, Piscataway, NJ.

  • Li, Y.-C. and Montelione, G.T. (1994) J. Magn. Reson. Ser. B, 105, 45–51.

    Google Scholar 

  • Li, Y.-C. and Montelione, G.T. (1995) Biochemistry, in press.

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Metzler, W.J., Constantine, K.L., Friedrichs, M.S., Bell, A.J., Ernst, E.G., Lavoie, T.B. and Mueller, L. (1993) Biochemistry, 32, 13818–13829.

    Google Scholar 

  • Montelione, G.T., Wüthrich, K., Nice, E.C., Burgess, A.W. and Scheraga, H.A. (1986) Proc. Natl. Acad. Sci. USA, 83, 8594–8598.

    Google Scholar 

  • Montelione, G.T., Wüthrich, K., Nice, E.C., Burgess, A.W., and Scheraga, H.A. (1987) Proc. Natl. Acad. Sci. USA, 84, 5226–5230.

    Google Scholar 

  • Montelione, G.T., Wüthrich, K. and Scheraga, H.A. (1988) Biochemistry, 27, 2235–2243.

    Google Scholar 

  • Montelione, G.T., Winkler, M.E., Burton, L.E., Rinderknecht, E., Sporn, M.B. and Wagner, G. (1989) Proc. Natl. Acad. Sci. USA, 86, 1519–1523.

    Google Scholar 

  • Montelione, G.T., Wüthrich, K., Burgess, A.W., Nice, E.C., Wagner, G., Gibson, K.D. and Scheraga, H.A. (1992) Biochemistry, 31, 236–249.

    Google Scholar 

  • Moy, F.J., Scheraga, H.A., Liu, J.-F., Wu, R. and Montelione, G.T. (1989) Proc. Natl. Acad. Sci. USA, 86, 9836–9840.

    Google Scholar 

  • Moy, F.J., Li, Y.-C., Winkler, M.E., Rauenbuehler, P., Scheraga, H.A. and Montelione, G.T. (1993) Biochemistry, 32, 7334–7353.

    Google Scholar 

  • Némethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S. and Scheraga, H.A. (1992) J. Phys. Chem., 96, 6472–6484.

    Google Scholar 

  • Nirmala, N.R. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.

    Google Scholar 

  • Padmanabhan, K., Padmanabhan, K.P., Tulinsky, A., Park, C.H., Bode, W., Huber, R., Blankenship, D.T., Cardin, A.D. and Kisiel, W. (1993) J. Mol. Biol., 232, 947–966.

    Google Scholar 

  • Palmer, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • Palmer, A.G., Hochstrasser, R.A., Millar, D.P., Rance, M. and Wright, P. (1993) J. Am. Chem. Soc., 115, 6333–6345.

    Google Scholar 

  • Reily, M.D., Thanabal, V. and Omecinsky, D.O. (1992) J. Am. Chem. Soc., 114, 6251–6252.

    Google Scholar 

  • Richarz, R. and Wüthrich, K. (1978) Biopolymers, 17, 2133–2141.

    Google Scholar 

  • Selander, M., Persson, E., Stenflo, J. and Drakenberg, T. (1990) Biochemistry, 29, 8111–8118.

    Google Scholar 

  • Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Tadaki, D.K. and Niyogi, S.K. (1993) J. Biol. Chem., 268, 10114–10119.

    Google Scholar 

  • Tappin, M.J., Cooke, R.M., Fitton, J.E. and Campbell, I.D. (1989) Eur. J. Biochem., 179, 629–637.

    Google Scholar 

  • Thanabal, V., Omecinsky, D.O., Reily, D.O. and Cody, W.L. (1994) J. Biomol. NMR 4, 47–59.

    Google Scholar 

  • Ullner, M., Selander, M., Persson, E., Stenflo, J., Drakenberg, T. and Teleman, O. (1992) Biochemistry, 31, 5974–5983.

    Google Scholar 

  • Wagner, G. (1989) Methods Enzymol., 176, 93–113.

    Google Scholar 

  • Wagner, G. (1993) J. Biomol. NMR, 3, 375–385.

    Google Scholar 

  • Wagner, G. and Brühwiler, D. (1986) Biochemistry, 25, 5839–5843.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1992) Biochemistry, 31, 1647–1651.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994) J. Biomol. NMR, 4, 171–180.

    Google Scholar 

  • Wüthrich, K. (1976) NMR in Biological Research: Peptides and Proteins, North Holland Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celda, B., Biamonti, C., Arnau, M.J. et al. Combined use of 13C chemical shift and 1Hα13Cα heteronuclear NOE data in monitoring a protein NMR structure refinement. J Biomol NMR 5, 161–172 (1995). https://doi.org/10.1007/BF00208807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00208807

Keywords

Navigation