Skip to main content
Log in

Ion exchange between tectosilicates with the nepheline-kalsilite framework and molten MNO3 or MO (M = Li, Na, K, Ag)

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Natural nepheline, a synthetic Na-rich nepheline, and synthetic kalsilite were ion exchanged in molten MNO3 or MCl (M = Li, Na, K, Ag) at 220–800° C. Crystalline products were characterized by wet chemical and electron microprobe analysis, single crystal and powder X-ray diffraction, and transmission electron microscopy and diffraction. Two new compounds were obtained: Li-exchanged nepheline with a formula near (Li,K0.3,□)Li3[Al3(Al,Si)Si4O16] and a monoclinic unit cell with a = 951.0(6) b = 976.1(6) c = 822.9(5)pm γ = 119.15°, and Ag-exchanged nepheline with a formula near (K,Na,□)Ag3[Al3(Al,Si)Si4O16] and a hexagonal unit cell with a = 1007.4(8) c = 838.2(1.0) pm. Both compounds apparently retain the framework topology of the starting material. Ion exchange isotherms and structural data show that immiscibility between the end members is a general feature in the systems Na-Li, Na-Ag, and Na-K. For the system Na-K, a stepwise exchange is observed with (K,D)Na3[Al3(Al,Si)Si4O16] as an intermediate composition which has the nepheline structure and is miscible with the sodian end member (Na,□)Na3[Al3(Al,Si)Si4O16], but not with the potassian end member (K,□)4[Al3(Al,Si)Si4O16] which shows the kalsilite structure; there was no indication for the formation of trior tetrakalsilite (K/(K + Na)≈0.7) at the temperatures studied (350 and 800° C). The exact amount of vacancies □ on the alkali site depends upon the starting material and was found to be conserved during exchange, with ca 0–0.2 and 0.3–0.4 vacancies per 16 oxygen atoms for the synthetic and natural precursors, respectively. Thermodynamic interpretation of the Na-K exchange isotherms shows, as one important result, that the sodian end member is unstable with respect to the intermediate at K/(K+Na)≈0.25 by an amount of ca 45 kJ/mol Na in the large cavity at 800° C (52 kJ/mol at 350° C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrer RM (1974) Isomorphous replacement by ion exchange: some equilibrium aspects. Bull. Soc. Fr. Minér. Cristallogr. 97:89–100

    Google Scholar 

  • Barrer RM, Klinowski J, Sherry HS (1973) Zeolite exchangers. Thermodynamic treatment when not all ions are exchangeable. JCS Faraday II 69:1669–1676

    Google Scholar 

  • Benedetti E, De Gennaro M, Franco E (1977) Primo rinvenimento in natura di tetrakalsilite. Rend. Acc. Naz. Lincei Ser VIII 62:835–838

    Google Scholar 

  • Bernas B (1968) A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry. Anal. Chemistry 40:1682–1686

    Google Scholar 

  • Bonaccorsi E, Merlino S, Pasero M (1988) Trikalsilite: its structural relationships with nepheline and tetrakalsilite. Neues Jahrbuch Mineralogie Monatshefte 12:559–567

    Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves. Wiley-Interscience, New York: 772 p.

    Google Scholar 

  • Brown WL, Cesbron F, Dupont G (1972) Trinepheline; a new synthetic modification in the nepheline group. Z. Krist. 136:468–470

    Google Scholar 

  • Debron G (1965) Contribution à l'étude des réactions d'échange des ions alcalins et alcalinoterreux dans les feldspathoïdes. Bull. Soc. Franç. Min. Crist. 88:69–96

    Google Scholar 

  • Dollase WA (1970) Least squares refinement of the structure of a plutonic nepheline. Z. Krist. 132:27–44

    Google Scholar 

  • Dollase WA, Freeborn WP (1977) The structure of KAlSiO4 with P63mc symmetry. Amer. Mineral. 62:336–340

    Google Scholar 

  • Dollase WA, Peacor DR (1971) Si-Al ordering in nepheline. Contrib. Mineral. Petrol. 30:129–134

    Google Scholar 

  • Dollase WA, Thomas WM (1978) The crystal chemistry of silicarich, alkali-deficient nepheline. Contrib. Mineral. Petrol. 66:311–318

    Google Scholar 

  • Donnay G, Schairer JF, Donnay JDH (1959) Nepheline solid solutions. Min. Mag. 32:93–109

    Google Scholar 

  • Ferry JM, Blencoe JG (1978) Subsolidus phase relations in the nepheline-kalsilite system at 0.5, 2.0 and 5.0 kbar. Amer. Mineral. 63:1225–1240

    Google Scholar 

  • Flinn DR, Stern KH (1972) Alkali ion mobility and exchange equilibria in silica glass. J. Phys. Chem. 76:1072–1081

    Google Scholar 

  • Foreman N, Peacor DR (1970) Refinement of the nepheline structure at several temperatures. Z. Krist. 132:45–70

    Google Scholar 

  • Gaines GL, Thomas HC (1953) Adsorption studies on clay minerals II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21:714–718

    Google Scholar 

  • Gregorkiewitz M (1980) Synthese und Charakterisierung poröser Silicate. Ph. D. Thesis, Univ. Darmstadt: 794 p.

  • Gregorkiewitz M (1984) Crystal structure and Al/Si ordering of a synthetic nepheline. Bull. Minéral. 107:499–507

    Google Scholar 

  • Gregorkiewitz M (1986) Alkali ion diffusion in M′(AlSiO4) compounds with frameworks of the tridymite topology and its variants. Solid State Ionics 18&19:534–538

    Google Scholar 

  • Hahn Th, Buerger MJ (1955) The detailed structure of nepheline, KNa3Al4Si4O16. Z. Krist. 106:308–338

    Google Scholar 

  • Hamilton DL, MacKenzie WS (1960) Nepheline solid solution in the system NaAlSiO4-KAlSiO4-SiO2. J. Petrol. 1:56–72

    Google Scholar 

  • Henderson CMB, Roux J (1977) Inversions in sub-potassic nephelines. Contrib. Mineral. Petrol. 61:279–298

    Google Scholar 

  • Henderson CMB, Thompson AB (1980) The low-temperature inversion in subpotassic nephelines. Amer. Mineral. 65:970–980

    Google Scholar 

  • Klaska KH (1974) Strukturuntersuchungen an Tridymitabkömmlingen (beryllonit-reihe, trinephelin). Ph. D. Thesis, Univ. Hamburg: 103 p.

  • Kleppa OJ, Hersh LS (1961) Heats of mixing in liquid alkali nitrate systems. J. Chem. Phys. 34:351–358

    Google Scholar 

  • Kleppa OJ, Hersh LS, Toguri JM (1963) Thermochemistry of simple fused salt mixtures. Acta Chem. Scand. 17:2681–2687

    Google Scholar 

  • Konnert JH, Appleman DE (1978) The crystal structure of low tridymite. Acta Cryst. B 34:391–403

    Google Scholar 

  • Merlino S, Franco E, Mattia CA, Pasero M, De Gennaro M (1985) The crystal structure of panunzite (natural tetrakalsilite). Neues Jahrbuch Mineralogie Monatshefte: 322–328

  • Perrotta AJ, Smith JV (1965) The crystal structure of kalsilite KAlSiO4. Min. Mag. 35:588–595

    Google Scholar 

  • Roux J (1974) Etude des solutions solides des nephelines (Na,K)AlSiO4 et (Na,Rb)AlSiO4. Geochim. Cosmochim. Acta 38:1213–1224

    Google Scholar 

  • Roux J (1979) Etudes physicochimiques des feldspathoïdes et application aux problèmes petrographiques. Thèse d'état, Paris-Sud, Centre d'Orsay: 53 p.

    Google Scholar 

  • Sahama TG (1957) Complex nepheline-kalsilite phenocrysts in Kabfumu lava, Nyiragongo area, north Kivu in Belgian Congo. J. Geology, Chicago 65:515–526

    Google Scholar 

  • Sahama TG, Neuvonen KJ, Hytönen K (1956) Determination of the composition of kalsilites by an X-ray method. Min. Mag. 31:200–208

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32:751–767

    Google Scholar 

  • Simmons WB, Peacor DR (1972) Refinement of the crystal structure of a volcanic nepheline. Amer. Mineral. 57:1711–1719

    Google Scholar 

  • Smith JV, Tuttle OF (1957) The nepheline-kalsilite system I. X-ray data for the crystalline phases. Amer. J. Science 255:282–305

    Google Scholar 

  • Sobrados I (1991) Sintesis, cambio iónico y conductividad de electrolitos sólidos de la familia de los tectosilicatos M[AlSiO4] (M = Li, Na, K, Ag). PhD Thesis, Fac C Químicas, Universidad Complutense, Madrid, 249 p.

    Google Scholar 

  • Strunz H (1978) Mineralogische Tabellen. Akad. Verlagsgesellschaft, Leipzig: 622 p

    Google Scholar 

  • Tscherry V, Schulz H, Laves F (1971) Average and superstructure of β-eucryptite (LiAlSiO4). Part I. Average structure. Z. Krist. 135:161–174

    Google Scholar 

  • Tuttle OF, Smith JV (1958) The nepheline-kalsilite system. II. Phase relations. Amer. J. Science 256:571–589

    Google Scholar 

  • Yund RA, McCallister RH, Savin SM (1972) An experimental study of nepheline-kalsilite exsolution. J. Petrol. 13:255–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobrados, I., Gregorkiewitz, M. Ion exchange between tectosilicates with the nepheline-kalsilite framework and molten MNO3 or MO (M = Li, Na, K, Ag). Phys Chem Minerals 20, 433–441 (1993). https://doi.org/10.1007/BF00203114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203114

Keywords

Navigation