Skip to main content
Log in

Thioredoxin h is one of the major proteins in rice phloem sap

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Sieve tubes play important roles in the transfer of nutrients as well as signals. Hundreds of proteins were found in pure phloem sap collected from rice (Oryza sativa L. cv. Kantou) plants through the cut ends of insect stylets. These proteins may be involved in nutrient transfer and signal transduction. To characterize the nature of these proteins, the partial amino-acid sequence of a 13kDa protein, named RPP13-1, that was abundant in the pure phloem sap was determined. A cDNA clone of 687 bp, containing an open reading frame of 122 amino acids, was isolated using corresponding oligonucleotides as a probe. The deduced amino-acid sequence was very similar to that of the ubiquitous thiol redox protein, thioredoxin. The consensus sequences of thioredoxins are highly conserved. No putative signal peptide was identified. Antiserum against wheat thioredoxin h cross-reacted with RPP13-1 in the phloem sap of rice plants. RPP131 produced in Escherichia coli was reactive to antiserum against wheat thioredoxin h. Both E. coli-produced RPP13-1 and the phloem sap proteins catalyzed the reduction of the disulfide bonds of insulin in the presence of dithiothreitol. These results indicate that an active thioredoxin is a major protein translocating in rice sieve tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

two dimensional

pI:

isoelectric point;

RPP13:

13-kDa rice phloem sap protein

References

  • Allen, A.K. (1979) A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has a specificity for a β-1,4-linked N-acetylglucosamine oligosaccharide. Biochem. J. 183, 133–137

    Google Scholar 

  • Bostwick, D.E., Dannenhoffer, J.M., Skaggs, M.I., Lister, R.M., Larkins, B.A., Thompson, G.A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4, 1539–1548

    Google Scholar 

  • Brugidou, C., Marty, I., Chartier, Y., Meyer, Y. (1993) The Nicotiana tabacum genome encodes two cytoplasmic thioredoxin genes which are differently expressed. Mol. Gen. Genet. 238, 285–293

    Google Scholar 

  • Cleveland, D.W., Fischer, S.G., Kirschner, M.W., Laemmli, U.K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 1102–1106

    Google Scholar 

  • Cronshaw, J. (1981) Phloem structure and function. Annu. Rev. Plant Physiol. 32, 465–484

    Google Scholar 

  • Cronshaw, J., Sabnis, D.D. (1990) Phloem proteins. In: Sieve elements, pp257–283, Behnke, H.-D., Sjolund, R.D., eds. Springer, Berlin

    Google Scholar 

  • Decottignies, P., Schmitter, J.M., Dutka, S., Jacquot, J.P., Miginiac Maslow, M. (1991) Characterization and primary structure of a second thioredoxin from the green alga, Chlamydommonas reinhardtii. Eur. J. Biochem. 198, 505–512

    Google Scholar 

  • Doyle, J.J., Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus, 12, 13–15

    Google Scholar 

  • Eklund, H., Gleason, F.K., Holmgren, A. (1991) Structural and functional relations among thioredoxins of different species. Proteins 11, 13–28

    Google Scholar 

  • Eschrich, W., Heyser, W. (1975) Biochemistry of phloem constituents. In: Encyclopedia of plant physiology, N.S. vol.1: Transport in plants, 1. Phloem transport, pp. 101–136, Zimmermann, M.H., Milburn, J.A., eds. Springer, Berlin

    Google Scholar 

  • Fernando, M.R., Nanri, H., Yoshitake, S., Nagata-Kuno, K., Minakami, S. (1992) Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur. J. Biochem. 209, 917–922

    Google Scholar 

  • Fisher, D.B., Wu, Y, Ku, M.S.B. (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol. 100, 1433–1441

    Google Scholar 

  • Florencio, F.J., Yee, B.C., Johnson, T.C., Buchanan, B.B. (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch. Biochem. Biophys. 266, 496–507

    Google Scholar 

  • Frommer, W.B., Hummel, S., Rosemary, J.W. (1993) Expression cloning in yeast of a cDNA encoding a broad specificity aminoacid permease from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 90, 5944–5948

    Google Scholar 

  • Fujiwara, T., Giesman-Cookmeyer, D., Ding, B., Lommel, S.A., Lucas, W.J. (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic virus movement protein. Plant Cell 5, 1783–1794

    Google Scholar 

  • Gan, Z.R. (1991) Yeast thioredoxin genes. J. Biol. Chem. 266, 1692–1696

    Google Scholar 

  • Goto, Y., Noda, Y., Narimoto, K., Umaoka, Y, Mori, T. (1992) Oxidative stress on mouse embryo development in vitro. Free Radical Biol. Med. 13, 47–53

    Google Scholar 

  • Grippo, J.F., Holmgren, A., Pratt, W.B. (1985) Proof that the endogenous, heat-stable glucocorticoid receptor-activating factor is thioredoxin. J. Biol. Chem. 260, 93–97

    Google Scholar 

  • hayashi, H., Chino, M. (1985) Nitrate and other anions in the rice phloem sap. Plant Cell Physiol. 26, 1319–1327

    Google Scholar 

  • Hayashi, H., Chino, M. (1990) Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol. 31, 247–251

    Google Scholar 

  • Hayashi, T, Ueno, Y, Okamoto, T. (1993) Oxidoreductive regulation of nuclear factor kB. J. Biol. Chem. 268, 11380–11388

    Google Scholar 

  • Hirano, H., Watanabe, T. (1990) Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: application to an insoluble protein. Electrophoresis 11, 573–580

    Google Scholar 

  • Holmgren, A. (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254, 9627–9632

    Google Scholar 

  • Holmgren, A. (1985) Thioredoxin. Annu. Rev. Biochem. 54, 237–271

    Google Scholar 

  • Hsu, L.C., Chiou, T.J., Chen, L., Bush, D.R. (1993) Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc. Natl. Acad. Sci. USA 90, 7441–7445

    Google Scholar 

  • Johnson, T.C., Cao, R.Q., Kung, J.E., Buchanan, B.B. (1987) Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells. Planta 171, 321–331

    Google Scholar 

  • Kamo, M., Tsugita, A., Wiessner, C., Wedel, N., Bartling, D., Herrmann, R.G., Aguilar, F., Gardet-Salvi, L., Schuermann, P. (1989) Primary structure of spinach chloroplast thioredoxin F: protein sequencing and analysis of complete cDNA clones for spinach chloroplast. Eur. J. Biochem. 154, 197–203

    Google Scholar 

  • Kawabe, S., Fukumorita, T, Chino, M. (1980) Collection of rice phloem sap from stylets of homopterous insects severed by YAG laser. Plant Cell Physiol. 21, 1319–1327

    Google Scholar 

  • Maeda, K., Tsugita, A., Dalzoppo, D., Vilbois, F., Schuermann, P. (1986) Further characterization and amino acid sequence of mtype thioredoxins from spinach chloroplasts. Eur. J. Biochem. 154, 197–203

    Google Scholar 

  • Marcus, F., Chamberlain, S.H., Chu, C., Masiarz, F.R., Shin, S., Yee, B.C., Buchanan, B.B. (1991) Plant thioredoxin-h — an animal-like thioredoxin occurring in multiple cell compartments. Arch. Biochem. Biophys. 287, 195–198

    Google Scholar 

  • Marty, I., Brugidou, C., Chartier, Y, Meyer, Y. (1993) Growth-related gene expression in Nicotiana tabacum mesophyll protoplasts. Plant J. 4, 265–278

    Google Scholar 

  • Marty, I., Meyer, Y. (1991) Nucleotide sequence of a cDNA encoding a tobacco thioredoxin. Plant Mol. Biol. 17, 143–147

    Google Scholar 

  • Nakamura, S., Hayashi, H., Mori, S., Chino, M. (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol. 34, 927–933

    Google Scholar 

  • Noueiry, A.O., Lucas, W.J., Gilbertson, R.L. (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76, 925–932

    Google Scholar 

  • Palmiter, R.D. (1974) Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undegraded polysomes and messenger ribonucleic acid. Biochemistry 13, 3606–3615

    Google Scholar 

  • Parthasarathy, M.V. (1975) Sieve element structure. In: Encyclopedia of plant physiology, N.S. vol 1: Transport in plants, 1. Phloem transport, pp. 3–38, Zimmermann, M.H., Milburn, J.A., eds. Springer, Berlin

    Google Scholar 

  • Pigiet, V.P., Schuster, B.J. (1986) Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc. Natl. Acad. Sci. USA 83, 7643–7647

    Google Scholar 

  • Raven, J.A. (1991) Long-term functioning of enucleate sieve elements: possible mechanisms of damage avoidance and damage repair. Plant Cell Environ. 14, 139–146

    Google Scholar 

  • Read, S.M., Northcote, D.H. (1983) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur. J. Biochem. 134, 561–569

    Google Scholar 

  • Riesmeier, J.W., Willmitzer, L., Fromer, W.B. (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11, 4705–4713

    Google Scholar 

  • Rosemary, J.W., Willmitzer, L., Frommer, W.B. (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11, 4705–4713

    Google Scholar 

  • Rivera-Madrid, R., Marinho, P., Brugidou, C., Chartier, Y., Meyer, Y. (1993) Nucleotide sequence of a cDNA clone encoding an Arabidopsis thaliana thioredoxin h. Plant Physiol. 102, 327–328

    Google Scholar 

  • Sabnis, D.D., Hart, J.W. (1976) A comparative analysis of phloem exudate proteins from Cucurbita melo, Cucurbita sativus and Cucurbita maxima by polyacrylamide gel electrophoresis and isoelectric focussing. Planta 130, 211–218

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467

    Google Scholar 

  • Sloan, R.T., Sabnis, D.D., Hart, J.W. (1978) The heterogeneity of phloem exudate from different plants: a comparative survey of ten plants using polyacrylamide gel electrophoresis. Planta 132, 97–102

    Google Scholar 

  • Tagaya, Y., Maeda, Y, Mitsui, A., Kondo, N., Matsui, H., Hamuro, J., Brown, N., Arai, K., Yokota, T, Wakasugi, H., Yodoi, J. (1989) ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 8, 757–764

    Google Scholar 

  • Towbin, H., Staehelin, T., Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354

    Google Scholar 

  • Wedel, N., Clausmeyer, S. Herrmann, R. G., Gardet-Salvi, L., Schurmann, P. (1992) Nucleotide sequence of cDNAs encoding the entire precursor polypeptide for thioredoxin m from spinach chloroplasts. Plant Mol. Biol. 18, 527–533

    Google Scholar 

  • Wollman, E.E., d'Auriol, L., Rimsky, L., Shaw, A., Jacquot, J.P., Wingfield, P., Graber, P., Dessarps, F., Robin, P., Galibert, F., Bertoglio, J., Fradelizi, D. (1988) Cloning and expression of a cDNA for human thioredoxin. J. Biol. Chem. 263, 15506–15512

    Google Scholar 

  • Ziegler, H. (1975) Nature of transported substances. In: Encyclopedia of plant physiology, N.S. vol.1: Transport in plants, 1. Phloem transport, pp. 59–100, Zimmermann, M.H., Milburn, J.A., eds. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are grateful to Dr. Daisuke Shibata for providing the rice leaf cDNA library, to Dr. Bob B. Buchanan for the gift of antiserum against wheat thioredoxin h, and to Dr. A. Matsuzaki (The university of Tokyo, Tokyo, Japan) for the gift of rice seeds. The authors also thank Dr. Toshiyuki Nagata (The university of Tokyo, Tokyo, Japan) and Dr. Rick Waiden (Max-Planck-Institut für Züchtungsforschung, Köln, Germany) for critical reading of the manuscript. This work was supported in part from the Grant in Aid for Scientific Research from the Ministry of Education, Japan to S.M., T.F., H.H., M.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiwatari, Y., Honda, C., Kawashima, I. et al. Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195, 456–463 (1995). https://doi.org/10.1007/BF00202605

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202605

Keywords

Navigation