Skip to main content
Log in

Postmortem activity of the key enzymes of glycolysis

In rat brain regions in relation to time after death

  • Originalarbeiten
  • Published:
Zeitschrift für Rechtsmedizin Aims and scope Submit manuscript

Summary

The activities of the rate-limiting enzymes of glycolytic pathway were measured in various areas of rat brains kept at a temperature of +25°C for various intervals after death by cervical dislocation. Hexokinase shows a substantial decline in activity over a period of 24 h, reaching 41%, 57%, 44%, and 51% of the controls in cerebellum, medulla oblongata and pons, cerebral cortex, and diencephalon, respectively. In the same areas the phosphofructokinase reached 28%, 61%, 60%, and 40% of the zero-time activity, respectively. Lactate dehydrogenase behaves differently in the four areas, with an increase in cerebral cortex and diencephalon and a decrease in cerebellum and medulla oblongata and pons. Pyruvate kinase activity was quite stable over the 24 h period studied. Therefore, the activities of hexokinase and phosphofructokinase in brain tissue were of little value for diagnosis of the time of death.

Zusammenfassung

Es wird über die Aktivität der für die Glykolyse notwendigen Schlüsselenzyme in verschiedenen Hirngebieten der Ratte berichtet. Nach Tötung der Tiere mittels Zervikalluxation wurden die Gehirne bei +25°C verwahrt. Die Bestimmungen wurden zu verschiedenen Zeitpunkten durchgeführt. Die Hexokinase zeigte eine deutliche Aktivitätsverminderung nach den ersten 24 h: 44% der Kontrollaktivität in der Großhirnrinde, 51% im Diencephalon, 57% in der Medulla oblongata, im Pons und 41% im Cerebellum. In denselben Zonen zeigte die Phosphofructokinase ein 60%, 40%, 61% und 28% der Aktivität im Verhältnis mit der Kontrolle. Die Werte für die Laktatdehydrogenase waren verschieden. Zwar zeigten sich auch eine Abnahme im Pons und in der Medulla oblongata und im Cerebellum, dagegen eine Zunahme in der Cortex und im Diencephalon. Die Aktivität der Pyruvatkinase war ziemlich beständig. Trotzdem erscheint es, daß das Studium der Aktivität der Hexokinase und Phosphofructokinase von geringem Wert für die Bestimmung der Todeszeit ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coe JI (1977) Postmortem chemistry of blood, cerebrospinal fluid and vitreous humor. In: Tedeschi CG, Eckert WG, Tedeschi LG (eds) Forensic medicine, vol 2: Physical trauma. Saunders, Philadelphia London Toronto, pp 1033–1060

    Google Scholar 

  2. Luna A, Villanueva E, Jiménez G, Luna JD (1980) Evolución postmortem de los enzimas GOT, GPT, CK, LDH e isoenzimas en el líquido pericárdico. Rev Esp Med Legal 24–25:83–84

    Google Scholar 

  3. Luna A, Villanueva E, De la Higuera J, Luna JD (1980) Evolución postmortem del Ca, Mg, Zn, Cu y K en el líquido pericárdico. Rev Esp Med Legal 24–25:90–94

    Google Scholar 

  4. Balasooriya BAW, St Hill CA, Williams AR (1984) The biochemical changes in pericardial fluid after death. An investigation of the relationship between the time since death and the rise or fall in electrolyte and enzyme concentrations and their possible usefulness in determining the time of death. Forensic Sci International 26:93–102

    Google Scholar 

  5. Gössner W (1955) Untersuchungen über das Verhalten der Phosphatasen und Esterasen während der Autolyse. Virchows Arch [Pathol Anat] 327:304–313

    Google Scholar 

  6. Van Lancker JL, Holtzer RL (1959) The release of acid phosphatase and beta-glucuronidase from cytoplasmic granules in the early course of autolysis. Am J Pathol 35:563–573

    Google Scholar 

  7. King DW, Paulson SR, Hannaford NC, Krebs AT (1959) Cell death. II. The effect of injury on the enzymatic protein of Ehrlich tumor cells. Am J Pathol 35:575–589

    Google Scholar 

  8. Mallach HJ, Merker HJ, Wolff J (1965) Elektronenmikroskopische Untersuchungen über die Struktur der Forellenmuskulatur und die Lokalisation der sauren ATPase im Verlaufe der Totenstarre. Klin Wochenschr 43:794–810

    Google Scholar 

  9. Oehmichen M (1980) Enzyme alterations in brain tissue during the early postmortal interval with reference to the histomorphology: review of the literature. Z Rechtsmed 85:81–95

    Google Scholar 

  10. Knull HR, Taylor WF, Wells WW (1973) Effects of energy metabolism on in vivo distribution of hexokinase in brain. J Biol Chem 248:5414–5418

    Google Scholar 

  11. Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Google Scholar 

  12. Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enzymes of energy metabolism. Biochem J 218:139–145

    Google Scholar 

  13. Black IB, Geen SC (1975) Postmortem changes in brain catecholamine enzymes. Arch Neurol 32:47–49

    Google Scholar 

  14. Ogorochi T, Narumiya S, Mizuno N, Yamashita K, Miyazaki H, Hayaishi O (1984) Regional distribution of prostaglandins D2, E2 and F and related enzymes in postmortem human brain. J Neurochem 43:71–82

    Google Scholar 

  15. Hawkins RA, Mans AM (1981) Intermediary metabolism of carbohydratres and other fuels. In: Lajtha A (ed) Handbook of neurochemistry. Planum Press, New York, pp 259–294

    Google Scholar 

  16. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of 3H-norepinephrine, 3H-dopamine and 3H-dopa in various regions of the brain. J Neurochem 13:655–669

    Google Scholar 

  17. Hernández A, Crane RK (1966) Association of heart hexokinase with subcellular structure. Arch Biochem Biophys 113:223–229

    Google Scholar 

  18. Chou AC, Wilson JE (1975) Hexokinase of rat brain. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 42. Academic Press, New York London, pp 20–25

    Google Scholar 

  19. Racker E (1947) Spectrophotometric measurement of hexokinase and phosphofructokinase activity. J Biol Chem 167:843–854

    Google Scholar 

  20. Johnson MK (1960) The intracellular distribution of glycolytic and other enzymes in rat brain homogenates and mitochondrial preparations. Biochem J 77:610–618

    Google Scholar 

  21. Bielicki L, Krieglstein J, Wever K (1980) Key enzymes of glycolysis in brain as influenced by thiopental. Arzneimittelforsch 30:594–597

    Google Scholar 

  22. Bücher T, Pfleiderer G (1955) Pyruvate kinase from muscle. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York London, pp 435–438

    Google Scholar 

  23. Bergmeyer HU, Bernt E (1974) Lactate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York London, pp 574–582

    Google Scholar 

  24. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  25. Annunziata P, Federico A (1979) Stability of lysosomal enzyme activity in postmortem rat brain. Acta Neurol 1:53–58

    Google Scholar 

  26. Brannan TS, Maker HS, Bernstein M (1982) Postmortem stability of enzymes detoxifying peroxide in brain. J Neurochem 39:589–591

    Google Scholar 

  27. McKeown SR (1979) Postmortem autolytic response in rat brain lysosomes. J Neurochem 32:391–396

    Google Scholar 

  28. Fahn S, Côté LJ (1976) Stability of enzymes in postmortem rat brain. J Neurochem 26:1039–1042

    Google Scholar 

  29. Mann DMA, Barton CM, Davies JS (1978) Postmortem changes in human central nervous tissue and the effects on quantitation of nucleic acids and enzymes. Histochem J 10:127–135

    Google Scholar 

  30. Smith DE, Robins E, Eydt KM, Doesch GE (1957) The validity of the quantitative histochemical method for use on postmortem material. I. Effect of time and temperature. Lab Invest 6:447–457

    Google Scholar 

  31. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    Google Scholar 

  32. Anderson PJ (1965) The effect of autolysis on the distribution of acid phosphatase in rat brain. J Neurochem 12:919–925

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pla, A., Lemus, L., Valenzuela, A. et al. Postmortem activity of the key enzymes of glycolysis. Z Rechtsmed 97, 49–59 (1986). https://doi.org/10.1007/BF00200959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200959

Key words

Schlüsselwörter

Navigation