Skip to main content
Log in

Internal mobility of cyclic RGD hexapeptides studied by 13C NMR relaxation and the model-free approach

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The internal mobility of three isomeric cyclic RGD hexapeptides designed to contain two β-turns in defined positions, cyclo(Arg-Gly-Asp-Gly-d-Pro-Pro) (I), cyclo(Arg-Gly-Asp-d-Pro-Gly-Pro) (II) and cyclo(Arg-Gly-Asp-d-Pro-Pro-Gly) (III), have been studied by 13C NMR longitudinal and transverse relaxation experiments and measurements of steady-state heteronuclear {1H}-13C NOE enhancement with 13C at natural abundance. The data were interpreted according to the model-free formalism of Lipari and Szabo, which is usually applied to data from macromolecules or larger sized peptides with overall rotational correlation times exceeding 1 ns, to yield information about internal motions on the 10–100 ps time scale. The applicability of the model-free analysis with acceptable uncertainties to these small peptides, with overall rotational correlation times slightly below 0.3 ns, was demonstrated for this specific instance. Chemical exchange contributions to T2 from slower motions were also identified in the process. According to the order parameters obtained for its backbone α-carbon atoms, II has the most rigid backbone conformation on the 10–100 ps time scale, and I the most flexible. This result coincides with the results of earlier NMR-constrained conformational searches, which indicated greatest uncertainty in the structure of I and least in II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon Press Oxford, pp. 264–353.

    Google Scholar 

  • Ali, F.E. and Samanen, J.M. (1992) In Innovations and Perspectives in Solid Phase Synthesis: Peptides, Polypeptides and Oligonucleotides (Ed., Epton, R.), Intercept Ltd., Hanover, U.K., pp. 333–335.

    Google Scholar 

  • Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.

    Google Scholar 

  • Bean, J.W., Kopple, K.D. and Peishoff, C.E. (1992) J. Am. Chem. Soc., 114, 5328–5334.

    Google Scholar 

  • Bevington, P.R. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Inc., New York, NY.

    Google Scholar 

  • Blackledge, M.J., Brüschweiler, R., Griesinger, C., Schmidt, J.M., Xu, P. and Ernst, R.R. (1993) Biochemistry, 32, 10960–10974.

    Google Scholar 

  • Bloom, M., Reeves, L.W. and Wells, E.J. (1965) J. Chem. Phys., 42, 1615–1624.

    Google Scholar 

  • Bonvin, A.M.J.J., Boelens, R. and Kaptein, R. (1993) In Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Vol. 2 (Eds, VanGunsteren, W.F., Weiner, P.K. and Wilkinson, A.J.), ESCOM, Leiden, pp. 407–440.

    Google Scholar 

  • Bremi, T., Ernst, M. and Ernst, R.R. (1994) J. Phys. Chem., 98, 9322–9334.

    Google Scholar 

  • Carr, H.Y. and Purcell, E.M. (1954) Phys. Rev., 94, 630–638.

    Google Scholar 

  • Chen, Y., Suri, A.K., Kominos, D., Sanyal, G., Naylor, A.M., Pitzenberger, S.M., Garsky, V.M., Levy, R.M. and Baum, J. (1994) J. Biomol. NMR, 4, 307–324.

    Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990a) Biochemistry, 29, 7387–7401.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Dellwo, M.J. and Wand, A.J. (1989). J. Am. Chem. Soc., 111, 4571–4578.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 553–559.

    Google Scholar 

  • Fushman, D., Weisemann, R., Thüring, H. and Rüterjans, H. (1994) J. Biomol. NMR, 4, 61–78.

    Google Scholar 

  • Gutowsky, H.S., McCall, D.M. and Slichter, C.P. (1953) J. Chem. Phys., 21, 279–292.

    Google Scholar 

  • Jarvis, J.A. and Craik, D.J. (1995) J. Magn. Reson. Ser. B, 107, 95–106.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • King, R. and Jardetzky, O. (1978) Chem. Phys. Lett., 55, 15–18.

    Google Scholar 

  • Kopple, K.D., Go, A., Logan, R.H. and Savrda, J. (1972) J. Am. Chem. Soc., 94, 973–981.

    Google Scholar 

  • Kopple, K.D., Wang, Y.-S., Cheng, A.G. and Bhandary, K.K. (1988) J. Am. Chem. Soc., 110, 4169–4176.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1980) Biophys. J., 30, 489–506.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4545–4570.

    Google Scholar 

  • Meiboom, S. and Gill, D. (1958) Rev. Sci. Instrum., 29, 688–691.

    Google Scholar 

  • Neuhaus, D. and Williamson, M.P. (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH Publishers Inc., New York, NY, pp. 23–61.

    Google Scholar 

  • Palmer III, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • Palmer III, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. and Rance, M. (1992) Mol. Phys., 75, 699–711.

    Google Scholar 

  • Palmer III, A.G., Hochstrasser, R.A., Millar, D.P., Rance, M. and Wright, P.E. (1993) J. Am. Chem. Soc., 115, 6333–6345.

    Google Scholar 

  • Peishoff, C.E., Ali, F.E., Bean, J.W., Calvo, R., D'Ambrosio, C.A., Eggleston, D.S., Hwang, S.M., Kline, T.P., Koster, P.F., Nichols, A., Powers, D., Romoff, T., Samanen, J.M., Stadel, J., Vasko, J.A. and Kopple, K.D. (1992) J. Med. Chem., 35, 3962–3969.

    Google Scholar 

  • Peng, J.W., Thanabal, V. and Wagner, G.J. (1991) J. Magn. Reson., 95, 421–427.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992a) Biochemistry, 31, 8571–8586.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992b) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986) Numerical Recipes, Cambridge University Press, Cambridge, pp. 498–546.

    Google Scholar 

  • Richarz, R., Nagayama, K. and Wüthrich, K. (1980) Biochemistry, 19, 5189–5196.

    Google Scholar 

  • Schneider, D.M., Dellwo, M.J. and Wand, A.J. (1992) Biochemistry, 31, 3645–3652.

    Google Scholar 

  • Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 53, 335–338.

    Google Scholar 

  • Silverstein, R.M., Bassler, G.C. and Morrill, T.C. (1981) Spectrometric Identification of Organic Compounds, 4th ed., Wiley, New York, NY, pp. 249–281.

    Google Scholar 

  • Stone, M.J., Fairbrother, W.J., Palmer, A.G., Reizer, J., Saier, M.H. and Wright, P.E. (1992) Biochemistry, 31, 4394–4406.

    Google Scholar 

  • Vold, R.L., Waugh, J.S., Klein, M.P. and Phelps, D.E. (1968) J. Chem. Phys., 48, 3831–3832.

    Google Scholar 

  • Williams, R.J.P. (1989) Eur. J. Biochem., 183, 479–497.

    Google Scholar 

  • Zieger, G. and Sterk, H. (1992) Magn. Reson. Chem., 30, 387–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briand, J., Kopple, K.D. Internal mobility of cyclic RGD hexapeptides studied by 13C NMR relaxation and the model-free approach. J Biomol NMR 6, 347–360 (1995). https://doi.org/10.1007/BF00197634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197634

Keywords

Navigation