Skip to main content
Log in

Neural networks simulating the frequency discrimination of hearing for non-stationary short tone stimuli

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This paper addresses the question of frequency discrimination of hearing for non-stationary (short) tone stimuli (duration ⩽125 ms). Shortening of the stimulus duration leads to widening of the frequency spectrum of the tone. It can be shown that for hearing no acoustical uncertainty relation holds and thus some nonlinear elements must be present in hearing physiology. We present neurophysiological and psychoacoustical findings supporting the hypothesis that frequency discrimination of non-stationary short tone stimuli is performed in neural networks of the auditory system. Neural network architectures that could process the temporal and place excitation patterns originating in the cochlea are suggested. We show how these networks (temporal coincidence network processing the temporal code and lateral inhibition network processing the place code) can be combined to show performance consistent with auditory physiology. They might explain the frequency discrimination of hearing for non-stationary short tone stimuli. We show the fitting of psychophysical relations based on these networks with the experimentally determined data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackburn CC, Sachs MB (1990) The representation of the steady-state vowel sound (ɛ) in the discharge patterns of cat anteroventral cochlear nucleus neurons. J Neurophysiol 63:1191–1212

    Article  CAS  Google Scholar 

  • Cardozo BL (1962) Frequency discrimination of human ear. In: Proceedings of the 4th International Congress on Acoustics, Copenhagen

  • Cody AR, Russell IJ (1987) The responses of hair cells in the basal turn of the guinea-pig cochlea to tones. J Physiol (Lond) 383:551–569

    Article  CAS  Google Scholar 

  • David E, Finkenzeller P, Kallert S, Keidel WD (1969) Reizfrequenzkor-relierte ‘untersetze’ neuronale Entladungsperiodizität im colliculus inferior und im corpus geniculatum mediale. Pflugers Arch 309:11–20

    Article  CAS  Google Scholar 

  • Ehret G, Merzenich MM (1988) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res 472:139–163

    Article  CAS  Google Scholar 

  • Erulkar SD (1975) Physiological studies of the inferior colliculus and medial geniculate body. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. auditory system, vol. V/2. Springer, Berlin Heidelberg New York, pp 147–198

    Google Scholar 

  • Evans EF, Zhao W (1993) Varieties of inhibition in the processing and control of processing in the mammalian cochlear nucleus. Prog Brain Res 97:117–126

    Article  CAS  Google Scholar 

  • Fack H (1956) Informationstheoretische Behandlung des Gehoers. In: Wincker F (ed) Impulstechnik. Springer, Berlin Heidelberg New York, pp 1–128

    Google Scholar 

  • Gabor D (1946) Theory of communication. J Int Eng 93:429–457

    Google Scholar 

  • Houtgast T (1974) Lateral suppression in hearing. PhD Thesis, Free University of Amsterdam. Academische Pers. BV, Amsterdam

    Google Scholar 

  • Ifukube T, White RL (1987) A speech processor with lateral inhibition for an eight channel cochlear implant and its evaluation. IEEE Trans Biomed Eng 34:876–882

    Article  CAS  Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology. Springer, Berlin Heidelberg New York, pp 153–231

    Chapter  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localisation. J Comp Physiol Psychol 41:35–39

    Article  CAS  Google Scholar 

  • Kaluzny J, Majernik V, Kaluzna M (1985) A contribution to the determination of the frequency discrimination ability. Arch Acoust 10:253–258

    Google Scholar 

  • Katsuki Y (1966) Neural mechanisms of hearing in cats and monkeys. Prog Brain Res 21A:71–97

    Article  Google Scholar 

  • Keidel WD (1992) Das Phaenomen des Hoerens: ein interdisziplinaerer Diskurs II. Naturwissenschaften 79:347–357

    Article  CAS  Google Scholar 

  • Keidel WD, Neff WD (eds) (1975) Handbook of sensory physiology. Auditory system, vol. V/2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kurogi S (1991) Speech recognition by an artificial neural network using findings on the afferent auditory system. Biol Cybern 64: 243–249

    Article  CAS  Google Scholar 

  • Liang C, Cistovic L (1960) Dependence of the frequency differential thresholds on the duration of the tone signals. Akust Zhur 6:81–85

    Google Scholar 

  • Majernik V (1967) Die Unschaerferelation fuer das Gehoer. Fyz cas SAV 2:65–73

    Google Scholar 

  • Majernik V, Kaluzny J (1979) On the auditory uncertainty relations. Acustica 43:132–146

    Google Scholar 

  • Majernik V, Kral A (1993) Sharpening of input excitation curves in lateral inhibition. Int J Neural Syst 4:65–80

    Article  CAS  Google Scholar 

  • Moore BCJ (1972) Some experiments relating to the perception of pure tones: possible clinical applications. Sound 6:73–79

    Google Scholar 

  • Moore BCJ (1993) Frequency analysis and pitch perception. In: Yost WA, Popper AN, Fay RR (eds) Human psychophysics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Oetinger R (1959) Die Grenze der Hoerbarkeit von Frequenz und Tonzahlaenderungen bei Tonimpulsen. Acustica 9:430–445

    Google Scholar 

  • Patuzzi R, Robertson D (1988) Tuning in mammalian cochlea. Physiol Rev 68:1009–1082

    Article  CAS  Google Scholar 

  • Phillips DP (1993) Representation of acoustic events in the primary auditory cortex. J Exp Psychol Hum Percept Perform 19:203–216

    Article  CAS  Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology. Springer, Berlin Heidelberg New York, pp 94–152

    Chapter  Google Scholar 

  • Ronken DA (1970) Some effects of bandwidth-duration constraints on frequency discrimination. J Acoust Soc Am 49:1232–1242

    Article  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low frequency tones in single auditory nerve fibres of the squirrel monkey. J Neurophysiol 30:769–793

    Article  CAS  Google Scholar 

  • Rozsypal AJ (1985) Computer simulation of an ideal lateral inhibition function. Biol Cybern 52:15–22

    Article  CAS  Google Scholar 

  • Schmidt RF (1985) Fundamentals of neurophysiology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Schreiner CE, Langner G (1988) Coding of temporal patterns in the central auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: neurobiological bases of hearing. Wiley, New York, pp 337–361

    Google Scholar 

  • Shamma SA, Symmes D (1985) Patterns of inhibition in auditory cortical cells in awake squirrel monkeys. Hear Res 19:1–13

    Article  CAS  Google Scholar 

  • Siebert WM (1970) Frequency discrimination in the auditory system: place or periodicity mechanisms. Proc IEEE 58:723–730

    Article  Google Scholar 

  • Steinschneider M, Arezzo J, Vaughan HG Jr (1980) Phase-locked cortical responses to a human speech sound and low-frequency tones in the monkey. Brain Res 198:75–84

    Article  CAS  Google Scholar 

  • Wunsch G (1962) Moderne Systemtheorie. Geest und Portig, Leipzig

    Google Scholar 

  • Zwicker E (1970) Masking and psychological excitation as consequences of the ear's frequency analysis. In: Plomp R, Smoorenburg GF (eds) Frequency analysis and periodicity detection in hearing. AW Sijthoff, Leiden

    Google Scholar 

  • Zwicker E (1975) Scaling. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. Auditory System, vol. V/2. Springer, Berlin Heidelberg New York, pp 401–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kral, A., Majernik, V. Neural networks simulating the frequency discrimination of hearing for non-stationary short tone stimuli. Biol. Cybern. 74, 359–366 (1996). https://doi.org/10.1007/BF00194928

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194928

Keywords

Navigation