Skip to main content
Log in

Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Gnathonemus petersii discriminates between ohmic and capacitive objects. To investigate the sensory basis of this discrimination we recorded from primary afférents that innervate either A or B mormyromast sensory cells. Modified and natural electric organ discharges were used as stimuli. In both A and B fibres frequencies below the peak-power frequency (3.8 to 4.5 kHz) of the electric organ discharge caused minimal first-spike latencies and a maximum number of spikes. A fibres did not discriminate phase-shifted stimuli, whereas B fibres responded significantly with a decrease in first-spike latency if the phase shift was only — 1°. In both A and B fibres an amplitude increase caused a decrease in spike latency and an increase in spike number; an amplitude decrease had the reverse effect. If stimulated with quasi-natural electric organ discharges distorted by capacitive objects, the responses of A fibres decreased with increasing signal distortion. In contrast, the responses of B fibres increased until amplitude effects began to dominate. Gnathonemus may use the physiological differences between A and B fibres to detect and discriminate between capacitive and purely ohmic objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ELL:

electrosensory lateral line lobe

EOD:

electric organ discharge

LFS:

local filtered signal

p-p:

peak-to-peak

References

  • Bastian J (1976) Electrolocation. Behavior, anatomy, and physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 577–612

    Google Scholar 

  • Bastian J (1986) Frequency response characteristics of electroreceptors in weakly electric fish. J Neurophysiol 112:131–156

    Google Scholar 

  • Bell CC (1990) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers. J Neurophysiol 63:319–332

    Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid fish. J Neurosci 9:1029–1044

    CAS  PubMed  Google Scholar 

  • Bell CC, Russell CJ (1978a) Effect of electric organ discharge on ampullary receptors in a mormyrid. Brain Res 145:85–96

    Google Scholar 

  • Bell CC, Russell CJ (1978b) Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area. J Comp Neurol 182:367–382

    Google Scholar 

  • Bell CC, Szabo T (1986) Electroreception in mormyrid fish. Central anatomy. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 375–464

    Google Scholar 

  • Bell CC, Finger TE, Russell CJ (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp Brain Res 42:9–22

    Google Scholar 

  • Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. I. Morphology. J Comp Neurol 286:391–407

    Google Scholar 

  • Bennett MVL (1965) Electroreceptors in mormyrids. Cold Spring Harbor Symp Quant Biol 30:245–265

    Google Scholar 

  • Bennett MVL (1967) Mechanisms of electroreception. In: Cahn P (ed) Lateral line detectors. Indiana University Press, Bloomington, Indiana, pp 313–395

    Google Scholar 

  • Bennett MVL (1971) Electroreception. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, pp 493–574

    Google Scholar 

  • Bennett MVL, Steinbach AB (1969) Influence of electric organ control system on electrosensory afferent pathways in mormyrids. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Assoc., Chicago, pp 207–214

    Google Scholar 

  • Bergland DG, Doland MT (1979) Fast Fourier Transform Algorithms. In: Digital Signal Processing Committee IEEE Acoustics, Speech and Signal Processing Society (ed) Programs for digital signal processing. IEEE Press, New York, pp 1.2–1–1.2–18

    Google Scholar 

  • Carr CE, Heiligenberg W, Rose GJ (1986) A phase-comparison circuit in the electric fish midbrain. I. Behavior and physiology. J Neurosci 6:107–119

    Google Scholar 

  • Emde G von der (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol 167:413–421

    Google Scholar 

  • Emde G von der, Bleckmann H (1992) Extreme phase-sensitivity of afferents which innervate mormyromast electroreceptors. Naturwissenschaften 79:131–133

    Google Scholar 

  • Emde G von der, Ringer T (1992) Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. I. Discrimination performance. Ethology 91:326–338

    Google Scholar 

  • Graff C, Kramer B (1989) Conditioned discrimination of the E.O.D. waveform by Pollimyrus isidori and Gnathonemus petersii. In: Erber J, Menzel R, Pflüger HJ, Todt D (eds) Neural mechanisms of behavior. Thieme, Stuttgart, p 94

    Google Scholar 

  • Heiligenberg W (1973) Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotidae). J Comp Physiol 87:137–164

    Google Scholar 

  • Heiligenberg W (1977) Principles of electrolocation and jamming avoidance in electric fish. In: Braitenberg V (ed) Studies of brain function, vol 1. Springer, Berlin Heidelberg New York, pp 1–85

    Google Scholar 

  • Heiligenberg W (1986) Jamming avoidance responses: model systems for neuroethology. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 613–650

    Google Scholar 

  • Heiligenberg W, Altes RA (1978) Phase sensitivity in electroreception. Science 199:1001–1004

    Google Scholar 

  • Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212:85–87

    Google Scholar 

  • Hopkins CD, Heiligenberg W (1978) Evolutionary designs for electric signals and electroreceptors in gymnotoid fishes of Surinam. Behav Ecol Sociobiol 3:113–134

    Google Scholar 

  • Hopkins CD, Westby GWM (1986) Time domain processing of electric organ discharges by pulse-type electric fish. Brain Behav Evol 29:77–104

    Google Scholar 

  • Kramer B, Otto B (1991) Waveform discrimination in the electric fish Eigenmannia: sensitivity for the phase differences between the spectral components of a stimulus wave. J Exp Biol 159:1–22

    Google Scholar 

  • Kramer-Feil U (1976) Analyse der sinnesphysiologischen Eigenschaften der Einheit Elektrorezeptor (Mormyromast)-sensible Faser des schwach-elektrischen Fisches Gnathonemus petersii. Doctoral thesis. University of Frankfurt, FRG

    Google Scholar 

  • Rose GJ, Heiligenberg W (1985) Temporal hyperacuity in the electric sense of fish. Nature 318:178–180

    Google Scholar 

  • Scheich H, Bullock TH (1974) The detection of electric fields from electric organs. In: Fessard A (ed) Handbook of sensory physiology, vol III/3. Electroreceptors and other specialized receptors in lower vertebrates. Springer, New York, pp 201–256

    Google Scholar 

  • Scheich H, Bullock TH, Hamstra RH (1973) Coding properties of two classes of afferent nerve fibers: high frequency electroreceptors in the electric fish Eigenmannia. J Neurophysiol 36:39–60

    Google Scholar 

  • Schlegel P (1975) Elektroortung bei schwach elektrischen Fischen: Verzerrungen des elektrischen Feldes von Gymnotus carapo und Gnathonemus petersii durch Gegenstände und ihre Wirkungen auf afférente Aktivitäten. Biol Cybern 20:197–212

    Google Scholar 

  • Schwan HP (1963) Determination of biological impedances. In: Nastuk PL (ed) Physical techniques in biological research, vol VI. Academic Press, New York London, pp 323–407

    Google Scholar 

  • Shumway CA, Zelick RD (1988) Sex recognition and neural coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis. J Comp Physiol 163:465–468

    Google Scholar 

  • Siesinger P, Bell CC (1985) Primary afferent fibers conduct impulses in both directions under physiological stimulus conditions. J Comp Physiol 157:15–22

    Google Scholar 

  • Szabo T (1970) Morphologische und funktioneile Aspekte bei Elektrorezeptoren. In: Rathmayer W (ed) Verh Dtsch Zool Ges. Gustav Fischer, Stuttgart, pp 141–148

    Google Scholar 

  • Szabo T, Fessard A (1974) Physiology of electroreceptors. In: Fessard A (ed) Handbook of sensory physiology, vol III/3. Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin Heidelberg New York, pp 59–124

    Google Scholar 

  • Szabo T, Hagiwara S (1967) A latency-change mechanism involved in sensory coding of electric fish (mormyrids). Physiol Behav 2:331–335

    Google Scholar 

  • Szabo T, Wersäll J (1970) Ultrastructure of an electroreceptor (mormyromast) in a mormyrid fish, Gnathonemus petersii. J Ultrastruct Res 30:473–490

    CAS  PubMed  Google Scholar 

  • Viancour TA (1979) Electroreceptors of a weakly electric fish. I. Characterization of tuberous receptor organ tuning. J Comp Physiol 133:317–325

    Google Scholar 

  • Watson D, Bastian J (1979) Frequency response characteristics of electroreceptors in the weakly electric fish, Gymnotus carapo. J Comp Physiol 134:191–202

    Google Scholar 

  • Zakon HH (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 103–156

    Google Scholar 

  • Zipser B, Bennett MVL (1976) Responses of cells of the posterior lateral line lobe to activation of electroreceptors in a mormyrid fish. J Neurophysiol 39:693–712

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von der Emde, G., Bleckmann, H. Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii . J Comp Physiol A 171, 683–694 (1992). https://doi.org/10.1007/BF00194116

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194116

Key words

Navigation