Skip to main content
Log in

Development of the amphibian oculomotor complex: Evidences for migration of oculomotor motoneurons across the midline

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The development of the oculomotor nucleus in five species of salamanders and one anuran species was investigated with tracing techniques. The data presented support the hypothesis that oculomotor motoneurons innervating the superior rectus muscle migrate across the midline. In the salamander Pleurodeles waltl, only ipsilateral oculomotor motoneurons are labeled in early development. Later, these neurons extend dendrites toward the contralateral side into the ventral tegmental neuropil, after which there is displacement of their nuclei (neuronal somata) across the midline. Cell bodies can be observed directly at the midline. In adult Salamandra salamandra, motoneurons innervating the superior rectus muscle are seen occasionally at the midline and on the ipsilateral side, with dendrites toward the contralateral side. Motoneurons on the ipsilateral side do not display these features. In Pleurodeles, developmental brain processes are slowed down, and the sequence of development of the contralateral subnucleus, which can be clearly observed, supports the migration hypothesis. In Xenopus laevis and most other species of salamanders this process is accelerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JC (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2:141–145

    Google Scholar 

  • Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    Google Scholar 

  • Akagi Y (1978) The localization of the motor neurons innervating the extraocular muscles in the oculomotor nuclei of the cat and rabbit using horseradish peroxidase. J Comp Neurol 181:745–762

    Google Scholar 

  • Barbas-Henry HA, Lohman AHM (1988) The motor nuclei and sensory neurons of the IIIrd, IVth, and VIth cranial nerves in the monitor lizard Varanus exanthematicus. J Comp Neurol 267:370–386

    Google Scholar 

  • Biondi G (1910) Osservazioni sullo sviluppo e sulla struttura dei nuclei d'origine dei nervi oculomotore e trocleare nell pollo. Riv Ital Neuropathol 3:302–327

    Google Scholar 

  • Bourrat F, Sotelo C (1988) Migratory pathways and neuritic differentiation of inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Dev Brain Res 39:19–37

    Google Scholar 

  • Domesick VB, Morest DK (1977) Migration and differentiation of ganglion cells in the optic tectum of the chick embryo. Neuroscience 2:459–475

    Google Scholar 

  • Fritzsch B (1980) Retinal projections in European salamandridae. Cell Tissue Res 213:325–341

    Google Scholar 

  • Fritzsch B, Sonntag R, Dubuc R, Ohta H, Grillner S (1990) Organization of the six motor nuclei innervating the ocular muscles in lamprey. J Comp Neurol 294:491–506

    Google Scholar 

  • Gallien L, Durocher M (1957) Table chronologique du dévéloppement chez Pleurodeles waltlii Michah. Bull Biol Fr Belg 91:97–114

    Google Scholar 

  • Glicksman MA (1980) Localization of motoneurons controlling the extraocular muscles of the rat. Brain Res 188:53–62

    Google Scholar 

  • Glücksohn S (1931) Aeussere Entwicklung der Extremitaeten und Stadieneinteilung der Larvenperiode von Triton taeniatus und T. cristatus. Arch Entwicklungsmech Org 125:341–365

    Google Scholar 

  • Graf W, Brunken WJ (1984) Elasmobranch oculomotor organization: anatomical and theoretical aspects of the phylogenetic development of vestibulo-oculomotor connectivity. J Comp Neurol 227:569–581

    Google Scholar 

  • Hanker JS, Yates PE, Metz CB, Rustioni A (1977) A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J 9:789–792

    Google Scholar 

  • Heaton MB (1981) The development of the oculomotor nuclear complex in the Japanese quail embryo. J Comp Neurol 198:633–648

    Google Scholar 

  • Heaton MB, Wayne DB (1983) Patterns of extraocular innervation by the oculomotor complex in the chick. J Comp Neurol 216:245–252

    Google Scholar 

  • Heaton MB, Moody SA, Koesier ME (1978) Peripheral innervation by migrating neuroblasts in the chick embryo. Neurosci Lett 10:55–59

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander Ambystoma tigrinum. The University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Hogg ID (1966) Observations of the development of the nucleus of Edinger-Westphal in man and the albino rat. J Comp Neurol 126:567–584

    Google Scholar 

  • Luiten PGM, Dijkstra-De Vlieger HP (1978) Extraocular muscle representation in the brainstem of the carp. J Comp Neurol 179:669–676

    Google Scholar 

  • Malmgren L, Olsson Y (1978) A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport. Brain Res 148:279–294

    Google Scholar 

  • Matesz C (1989) Development of the extraocular motor nuclei in the Xenopus laevis. Cell Diff Dev 27 [Suppl] S 197

    Google Scholar 

  • Matesz C (1990) Development of the oculomotor and trochlear nuclei in the Xenopus toad. Neurosci Lett 116:1–6

    Google Scholar 

  • Matesz C, Székély G (1977) The dorsomedial nuclear group of cranial nerves in the frog. Acta Biol Acad Sci Hung 28:461–474

    Google Scholar 

  • Mesulam M-M (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reactionproduct with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Mesulam M-M, Hegarty E, Barbas H, Carson KA, Gower EC, Knapp AG, Moss MB, Mufson EJ (1980) Additional factors influencing sensitivity in the tetramethylbenzidine method for horseradish peroxidase neurohistochemistry. J Histochem Cytochem 28:1255–1259

    Google Scholar 

  • Montgomery N, Fite KV, Grigonis AM (1985) The pretectal nucleus (lentiformis mesencephali) of Rana pipiens. J Comp Neurol 234:264–275

    Google Scholar 

  • Naujoks-Manteuffel C (1988) Ontogenetic development of mesencephalic centers in the brain of Pleurodeles waltlii (abstract). Proc. 16th Göttingen Neurobiology Conference 9. Thieme, Stuttgart

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G, Himstedt W (1986) Localization of motoneurons innervating the extraocular muscles in Salamandra salamandra L. (Amphibia, Urodela). J Comp Neurol 254:133–141

    Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland, Amsterdam

    Google Scholar 

  • Porter JD, Guthrie BL, Sparks DL (1983) Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport of horseradish peroxidase. J Comp Neurol 218:208–219

    Google Scholar 

  • Puelles L (1978) A Golgi-study of oculomotor neuroblasts migrating across the midline in chick embryos. Anat Embryol 152:205–215

    Google Scholar 

  • Puelles L, Privat A (1977) Do oculomotor neuroblasts migrate across the midline in the fetal rat brain? Anat Embryol 150:187–206

    Google Scholar 

  • Puelles-Lopez L, Malagon-Cobos F, Genis-Galvez JM (1975) The migration of oculomotor neuroblasts across the midline in the chick embryo. Exp Neurol 47:459–469

    Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of the fetal monkey neocortex. J Comp Neurol 145:61–84

    Google Scholar 

  • Rettig G, Fritzsch B, Himstedt W (1981) Development of retinofugal neuropil areas in the brain of the alpine newt, Triturus alpestris. Anat Embryol 162:163–171

    Google Scholar 

  • Rosiles JR, Leonard RB (1980) The organization of the extraocular motor nuclei in the atlantic stingray, Dasyatis sabina. J Comp Neurol 193:677–687

    Google Scholar 

  • Schönenberger N, Escher G, van der Loos H (1983) Axon number in oculomotor nerves in Xenopus: removal of one eye primordium affects both sides. Neurosci Lett 41:239–245

    Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration with special reference to the developing human brain: a review. Brain Res 62:1–35

    Google Scholar 

  • Sohal GS (1977) Development of the oculomotor nucleus with special references to the time of cell origin and cell death. Brain Res 138:217–228

    Google Scholar 

  • Sonntag R, Fritzsch B (1987) The development of the amphibian trochlear nucleus. An HRP study. Neurosci Lett 77:143–148

    Google Scholar 

  • Wilm C, Fritzsch B (1989) Development of tectal neurons in the perciform teleost Haplochromis burtoni. A Golgi study. Dev Brain Res 47:35–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naujoks-Manteuffel, C., Sonntag, R. & Fritzsch, B. Development of the amphibian oculomotor complex: Evidences for migration of oculomotor motoneurons across the midline. Anat Embryol 183, 545–552 (1991). https://doi.org/10.1007/BF00187903

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187903

Key words

Navigation