Skip to main content
Log in

On Liénard's equation and the uniqueness of limit cycles in predator-prey systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a system of ODE'S modelling the interaction of one predator and one prey

$$\begin{gathered} \frac{{dx}}{{dt}} = xg\left( x \right) - yp\left( x \right), \hfill \\ \frac{{dy}}{{dt}} = \gamma y\left[ { - \delta - \eta y - \alpha y^2 + h\left( x \right)} \right]. \hfill \\ \end{gathered}$$

This system defines a two-species community which incorporates competition among prey in the absence of any predators as well as a density-dependent predator specific death rate. This system is investigated under ecologically natural regularity conditions and assumptions on g, p and h to ensure the existence and uniqueness of limit cycles. The proof uses the standard Hopf-Andronov bifurcation theory and the technique of Liénard's equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, X., Chen, L.: A note on the uniqueness of limit cycle in two species predator-prey system. Ann. Differ. Equations 2, 415–417 (1986)

    Google Scholar 

  2. Dubois, D. M.: State-of-the-art of predator-prey systems modeling. In: Jørgensen, E. (ed.) State-of-the-art in ecological modelling. Proceedings, Copenhagen 1970 (Environmental Sciences and Applications, vol. 7, pp. 163–217) Oxford: Pergamon Press 1979

    Google Scholar 

  3. Freedman, H. I.: Stability analysis of a predator-prey with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979)

    Google Scholar 

  4. Freedman, H. I.: Deterministic mathematical models in population ecology. New York: Dekker 1980

    Google Scholar 

  5. Freedman, H. I.: Global stability in ODE models of population interactions. Appl. Mathematics Notes 13, 9–13 (1988)

    Google Scholar 

  6. Gause, G. F.: The struggle for existence. Baltimore: Williams and Wilkins 1934

    Google Scholar 

  7. Hainzl, J.: Stability and Hopf bifurcation in a predator-prey system with several parameters. SIAM J. Appl. Math. 48, 170–190 (1988)

    Google Scholar 

  8. Harrison, G. F.: Global stability of predator-prey interactions. J. Math. Biol. 8, 159–171 (1979)

    Google Scholar 

  9. Harrison, G. W.: Multiple stable equilibria in a predator-prey system. Bull. Math. Biol. 48, 137–148 (1986)

    Google Scholar 

  10. Hsu, S. B.: On global stability of a predator-prey system. Math. Biosci. 39, 1–10 (1978)

    Google Scholar 

  11. Huang, X. C.: Uniqueness of limit cycles of generalised Liénard systems and predator-prey systems. J. Phys. A. 21, L85-L91 (1988)

    Google Scholar 

  12. Jun-ping, C., Hong-de, Z.: The qualitative analysis of two species predator-prey model with Holling's type III functional response. Appl. Math. Mech. 7, 77–86 (1986)

    Google Scholar 

  13. Kuang, Y.: Nonuniqueness of limit cycles of Gause-type predator-prey systems. Appl. Anal. 29, 269–287 (1988)

    Google Scholar 

  14. Kuang, Y., Freedman, H. I.: Uniqueness of limit cycles in Gause type models of predator-prey systems. Math. Biosci. 88, 67–84 (1988)

    Google Scholar 

  15. Levin, S. A.: A more functional response to predator-prey stability. Am. Nat. 110, 381–383 (1977)

    Google Scholar 

  16. Lion, L. P., Cheng, K. S.: On the uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal. 19, 867–878 (1988)

    Google Scholar 

  17. Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Berlin Heidelberg New York: Springer 1976

    Google Scholar 

  18. McGehee, R., Armstrong, R. A.: Some mathematical problems concerning the ecological principle of competitive exclusion. J. Differ. Equations 23, 30–52 (1977)

    Google Scholar 

  19. Qiwu, C., Fengyong, L.: A mathematical model of predator based upon the theory of nutrition 2. A nutrition structure of the predator population and its functional response to the prey. Ecol. Modell. 40, 67–76 (1988)

    Google Scholar 

  20. Rothe, F.: The period of the Volterra—Lotka system. J. Reine Angew. Math. 355, 129–138 (1985)

    Google Scholar 

  21. Segel, L. A., Levin, S. A.: Application of nonlinear stability theory to the study of the effects of diffusion predator-prey interactions. In: Piccirelli, R.A. (ed.) Topics in statistical mechanics and biophysics, vol. 27, pp. 123–152. Proceedings, American Institute of Physics (1976)

  22. Svirezhev, Yu. M.: Nonlinear fluctuations in mathematical ecology. Ukr. Math. J. 39, 89–94 (1987)

    Google Scholar 

  23. Wolkowicz, G. S. K.: Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math. 48, 592–605 (1988)

    Google Scholar 

  24. Zhang, Z.: Proof of the uniqueness theorem of limit cycles of generalized Liénard equation. Appl. Anal. 23, 63–76 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, H.N. On Liénard's equation and the uniqueness of limit cycles in predator-prey systems. J. Math. Biol. 28, 341–354 (1990). https://doi.org/10.1007/BF00178782

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178782

Key words

Navigation