Skip to main content
Log in

Substrate specificity and stereoselectivity of fatty alcohol oxidase from the yeast Candida maltosa

  • Biochemical Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

In Candida maltosa and other alkene-utilizing yeasts a membrane-bound fatty alcohol oxidase (FAOD) is induced by growth on n-alkenes. The oxidation of 1-alkanols to the corresponding aldehydes is accompanied by the stoichiometric consumption of 1 mol O2 and formation of 1 mol hydrogen peroxide (H2O2). The FAOD of C. maltosa shows a broad substrate specificity. It catalyses the oxidation of 1-alkanols (C4 to C22), with a maximal activity of 1.85 gmmol H2O2/ min × mg protein for 1-octanol, as well as the transformation of 2-alkanols (C8 to C16) to ketones. Other compounds as α,ω-alkenediols, ω-hydroxypalmitic acid, phenylalkanols and terpene alcohols are substrates for the enzyme, although mostly with decreased activities. The oxidation of the racemic 2-alkanols by the FAOD proceeds with very high stereoselectivity for the R(−)-enatiomers only, leaving the S(+)-2-alkanol untouched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barth G, Künkel W (1979) Alcohol dehydrogenase (ADH) in yeasts. II. NAD+- and NADP+-dependent alcohol dehydrogenases in Saccharomycopsis lipolytica. Z Alg Mikrobiol 19:381–390

    Google Scholar 

  • Blasig R, Mauersberger S, Riege P, Schunck W-H, Jockisch W, Franke P, Müller H-G (1988) Degradation of long-chain n-alkenes by the yeast Candida maltosa. II. Oxidation of n-alkenes and intermediates using microsomal membrane fractions. Appl Microbiol Biotechnol 28:589–597

    Google Scholar 

  • Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599

    Google Scholar 

  • Fischli A (1980) Chiral building blocks in enantiomer synthesis using enzymatic transformation. In: Eberson L, Seebach D, Vasella A, Fischli A (eds) Modern synthetic methods. Otto Salle, Frankfurt am Main, pp 269–350

    Google Scholar 

  • Gmünder FK, Käppeli O, Fiechter A (1981) Chemostat studies on the hexadecane assimilation by the yeast Candida tropicalis. II. Regulation of cytochromes and enzymes. Eur J Appl Microbiol Biotechnol 12:135–142

    Google Scholar 

  • Hofmann KH, Schauer F (1988) Utilization of phenol by hydrocarbon assimilating yeasts. Antonie van Leeuwenhoek 54:179–188

    Google Scholar 

  • Hommel R, Ratledge C (1990) Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol Lett 70:183–186

    Google Scholar 

  • Ilchenko AP (1984) Oxidase of higher alcohols in the yeast Torulopsis candida grown on hexadecane. Mikrobiologiya 53:903–906

    Google Scholar 

  • Ilchenko AP, Tsfasman IM (1987) Isolation and characterization of aldehyde dehydrogenase from the Torulopsis candida yeast grown on hexadecane. Biokhimiya 52:58–65

    Google Scholar 

  • Ilchenko AP, Tsfasman IM (1988) Isolation and characterization of alcohol oxidase for higher alcohols of the yeast Torulopsis candida grown on hexadene. Biokhimiya 53:263–271

    Google Scholar 

  • Käppeli O (1986) Cytochrome P-450 of yeasts. Microbiol Rev 50:244–258

    Google Scholar 

  • Kemp GD, Dickinson FM, Ratledge C (1988) Inducible long chain alcohol oxidase from alkene-grown Candida tropicalis. Appl Microbiol Biotechnol 29:370–374

    Google Scholar 

  • Kirchner G, Scollar MP, Klibanov AM (1985) Resolution of racemic mixtures via lipase catalysis in organic solvents. J Am Chem Soc 107:7072–7076

    Google Scholar 

  • König WA (1987) The practice of enatiomer separation by capillary gas chromatography. Hütlig-Verlag, Heidelberg, p 42

    Google Scholar 

  • Krauzova VI, Komarova GN, Ilchenko AP, Gulevskaya SA (1984) Oxidation of alcohols by Candida guilliermondii grown on hexadecanol. Biokhimiya 50:726–732

    Google Scholar 

  • Krauzova VI, Komarova GN, Ilchenko AP, Gulevskaya SA (1984) Possible pathways of the oxidation of higher alcohols by membrane fractions of yeast cultures grown on hexadecane and hexadecanol. Biokhimiya 50:726–732

    Google Scholar 

  • Krauzova VI, Kuvichkina TN, Sharyshev AA, Romanova IB, Lozinov AB (1986) Lauric acid and NADH synthesis during dodecanol and dodecanol oxidation by membrane fractions of the yeast Candida maltosa grown on hexadecane. Biokhimiya 51:23–27

    Google Scholar 

  • Krauzova VI, Sharyshev AA (1987) Study on subcellular distribution of enzymes of the initial steps of n-alkene oxidation in the yeast Candida maltosa. Biokhimiya 52:599–606

    Google Scholar 

  • Laane C, Tramper J, Lilly MD (1987) Biocatalysis in organic media. Elsevier, Amsterdam

    Google Scholar 

  • Lebeault JM, Meyer E, Roche B, Azoulay E (1970a) Oxydation des alcools supérieurs chez Candida tropicalis cultivé sur hydrocatrbures. Biochim Biophys Acta 220:386–395

    CAS  Google Scholar 

  • Lebeult JM, Roche B, Duvnjak Z, Azoulay E (1970b) Alcool- et aldéhyde-deshydrogenases particulaires de Candida tropicalis cultivé sur hydrocarbures. Biochim Biophys Acta 220:373–387

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mauersberger S, Matyashova RN, Müller H-G, Lozinov AB (1980) Influence of the growth substrate and the oxygen concentration in the medium on the cytochrome P-450 content in Candida guilliermondii. Eur J Appl Microbiol Biotechnol 9:285–294

    Google Scholar 

  • Mauersberger S, Schunck W-H, Müller H-G (1981) The induction of cytochrome P-450 in Lodderomyces elongisporus. Z Allg Mikrobiol 21:313–321

    Google Scholar 

  • Mauersberger S, Schunck W-H, Müller H-G (1984) The induction of cytochrome P-450 in the alkene-utilizing yeast Lodderomyces elongisporus: alterations in the microsomal fraction. Appl Microbiol Biotechnol 19:29–35

    Google Scholar 

  • Mauersberger S, Schunck W-H, Blasig R (1985) Verfahren zur enzymatischen Oxidation von mittel- und langkettigen Alkoholen. GDR patent no. WP C12P/2782278

  • Mauersberger S, Kärgel E, Matyashova RN, Müller H-G (1987) Subcellular organization of alkene oxidation in the yeast Candidada maltosa. J Basic Microbiol 27:565–582

    Google Scholar 

  • Müller H-G, Güntherberg H, Drechsler H, Mauersb erger S, Kortus K, Oehme G (1991a) Stereosectivity ub tge enzymic oxidation of racemic alkylmethylcarbinols — a new approach to the S-enantiomers. Tetrahedron Lett 32:2009–2012

    Google Scholar 

  • Müller H-G, Schunck W-H, Kärgel E (1991b) Cytochrome P-450 of alkene-utilizing yeast In: Ruckpaul K (ed) Frontiers in biotransformations, vol 4. Akademie-Verlag, Berlin, pp 87–126

    Google Scholar 

  • Murray WD, Duff SJB (1990) Bio-oxidation of aliphatic and aromatic high molecular weight alcohols by Pichia pastoris alcohol oxidase. Appl Microbiol Biotechnol 33:202–205

    Google Scholar 

  • Riege P, Schunck W-H, Honeck H, Müller H-G (1981) Cytochrome P-450 from Lodderomyces elongisporus: its purification and some properties of the highly purified protein. Biochem Biophys Res Commun 98:527–534

    Google Scholar 

  • Sanglard D, Fiechter A (1989) Heterogeneity within the alkene-inducible cytochrome P-450 gene family of the yeast Candida tropicalis. FEBS Lett 256:128–134

    Google Scholar 

  • Sapozhnikova GP, Krauzova VI (1979) The activity and substrate specificity of alcohol dehydrogenases from yeasts oxidizing n-alkenes. Mikrobiologiya 48:793–797

    Google Scholar 

  • Schubert F, Mauersberger S, Schunck W-H, Passarge M (1985) Verfahren und Biosensor zur Bestimmung von mittel- und langkettigen Alkoholen. GRD patent no. WP GO1N/2782286

  • Schunck W-H, Mauersberger S, Kärgel E, Huth J, Müller H-G (1987) Function and regulation of cytochrome P-450 in alkene-assimilating yeast. II. Effect of oxygen limitation. Arch Microbiol 147:245–248

    Google Scholar 

  • Schunck W-H, Vogel F, Gross B, Kärgel E, Mauersberger S, Köpke K, Müller H-G (1991) Comparison of two cytochrome P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55:336–345

    Google Scholar 

  • Sharyshev AA (1991) Subcellular organization of the oxidative metabolism in alkene-utilizing yeasts. In: Finogenova TV, Sharyshev AA (eds) Proceedings of the workshop on mechanisms of microbial n-alkene oxidation and oversynthesis of metabolites, Centre for Biological Research, USSR Academy of Sciences, Pushchino, USSR. (in press).

    Google Scholar 

  • Shilowa NK, Matyashova RN, Ilchenko AP (1989) The effect of aeration on the activity of alcohol oxidase and enzymes utilizing hydrogen peroxide in the course of Candida maltosa growth on paraffin. Mikrobiologiya 58:430–435

    Google Scholar 

  • Sonnet PE (1987) Kinetic resolutions of aliphatic alcohols with a fungal lipase from Mucor miehei. J Org Chem 52:4377–4379

    Google Scholar 

  • Tanaka A, Ueda M, Okada H, Fukui S (1988) Formation of several enzymes associated with alkene utilization by yeast. Ann NY Acad Sci 501:449–453

    Google Scholar 

  • Yamada T, Nawa H, Kawamoto S, Tanaka A, Fukui S (1980) Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkene grown Candida tropicalis. Arch Microbiol 128:145–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: S. Mauersberger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauersberger, S., Drechsler, H., Oehme, G. et al. Substrate specificity and stereoselectivity of fatty alcohol oxidase from the yeast Candida maltosa . Appl Microbiol Biotechnol 37, 66–73 (1992). https://doi.org/10.1007/BF00174205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174205

Keywords

Navigation