Skip to main content
Log in

Aerosols for therapy and diagnosis

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Aerosols are defined as any mixture of solid or liquid particles/droplets that are stable as a suspension in air. Aerosols influence the lives of a large majority of the population. A proportion of particulates exacerbate or induce lung disease. Other aerosols are used in the prevention or control of lung disease or in the investigation of disease. This review covers the mechanisms of deposition of aerosols, the production and sizing of aerosols, factors affecting the variability in output from nebulisers and the use of radionuclides in defining drug deposition from therapeutic nebulisers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morrow PE. Aerosol characterisation and deposition. Am Rev Respir Dis 1974;110: 88–99

    Google Scholar 

  2. Stuart BO. Deposition of inhaled aerosols. Arch Intern Med 1973;131: 60–73

    Google Scholar 

  3. Hatch TF, Gross P. Pulmonary deposition and retention of inhaled aerosols. New York: Academic Press;1964: 13

    Google Scholar 

  4. Tayali NE, Bates CJ. Particle sizing techniques in multiphase flows: a review. Flow Meas Instrum 1990;1: 77–105

    Google Scholar 

  5. Cornillaut J. Particle size analyser. Appl Opt 1972;11: 265–268

    Google Scholar 

  6. Swithenbank J, Beer JM, Taylor DS, Abbot D, McCreath GC. A laser diagnostic for the measurement of droplet and particle size distribution. University of Sheffield Report H1C245. 1977

  7. Ho KKL, Kellaway IW, Tredree R. Particle size analysis of nebulised aerosols using Faunhofer laser diffraction and inertial impaction methods. J Pharm Pharmacol 1986;38: 26

    Google Scholar 

  8. Weibel ER. Morphometry of the human lung. Berlin Heidelberg New York: Springer 1963

    Google Scholar 

  9. Lourenco RV, Loddenkemper R, Carton RW. Patterns of distribution and clearance of aerosols in patients with bronchiectasis. Am Rev Respir Dis 1972;106: 857–866

    Google Scholar 

  10. Chamberlain MJ, Morgan WKC, Vinitski S. Factors influencing the regional deposition of inhaled particles in man. Clin Sci 1983;64: 69–78

    Google Scholar 

  11. Ferron GA, Kreyling WG, Haider B. Inhalation of salt aerosol particles — II. Growth and deposition in the human respiratory tract. J Aerosol Sci 1988;19: 611–631

    Google Scholar 

  12. Morrow PE. Some physical and physiological factors controlling the fate of inhaled substances. I. Health Phys 1960;2: 366–376

    Google Scholar 

  13. Mercer TT. Aerosol technology in hazard evaluation. New York: Academic Press, 1973

    Google Scholar 

  14. Fuchs NA. The mechanics of aerosols. Oxford: Pergamon Press, 1964

    Google Scholar 

  15. Brian J. Aerosol and humidity therapy. Am Rev Respir Dis 1980;122: 17–21

    Google Scholar 

  16. Gerrity TR, Lee PS, Hass FJ, Marinelli A, Werner P, Lourenco RV. Calculated deposition of inhaled particles in the airway generations of normal subjects. J Appl Physiol 1979;47: 867–873

    Google Scholar 

  17. Harris RL Jr, Fraser DA. A model for the deposition of fibres in the human respiratory system. Am Ind Hyg Assoc J 1976;37: 73–76

    Google Scholar 

  18. Morrow PE. Factors determining hygroscopic aerosol deposition in airways. Pysiol Rev 1986;66: 330–336

    Google Scholar 

  19. McFadden ER, Denison DM, Waller IF, Assoufi BI, Peacock A, Sopwith T. Direct recordings of the temperatures in the tracheobronchial tree in man. J Clin Invest 1982;69: 700–705

    Google Scholar 

  20. McFadden ER, Pichurko BMI, Bowman F, Ingenito EP, Burns S, Dowling N, Solway J. Thermal mapping of the airways in humans. J Appl Physiol 1985;58: 564–570

    Google Scholar 

  21. Task Group on Lung Dynamics. Deposition and retention models for internal dosimetry of the human respiratory tract. Health Phys 1966;12: 173–207

    Google Scholar 

  22. Miller RF, O'Doherty MJ. Pulmonary nuclear medicine. Eur J Nucl Med 1992;19: 355–368

    Google Scholar 

  23. Hurford MJ. Production of ferric oxide aerosols with a May spinning top aerosol generator. J Aerosol Sci 1981;12:441–456

    Google Scholar 

  24. May KR. An improved spinning top homogeneous spray apparatus. J Appl Physics 1949;20: 932–938

    Google Scholar 

  25. Wehner AP. Electro aerosol therapy.I. Am J Phys Med 1962;41: 24–40

    Google Scholar 

  26. Wehner AP. Electro aerosol therapy II. Am J Phys Med 1962;41: 68–86

    Google Scholar 

  27. Litt M, Swift DE. The Babington nebuliser. A new principle for generation of therapeutic aerosols. Am Rev Respir Dis 1972;105:308–310

    Google Scholar 

  28. Muir DC. The production of monodisperse aerosols by a La Mer-Sinclair generator. Ann Occup Hyg 1965;8: 233–238

    Google Scholar 

  29. Newman SP, Pellow PGD, Clarke SW. Flow pressure characteristics of compressors used for inhalation therapy. Eur J Respir Dis 1987;71: 122–126

    Google Scholar 

  30. Davis SS (1978) Physico-chemical studies on aerosol solutions for drug delivery: I. Water-propylene glycol systems. Int J Pharm 1978;1: 71–78

    Google Scholar 

  31. Phipps PR, Gonda I. Droplets produced by medical nebulizers. Some factors affecting their size and solute concentration. Chest 1990;97: 1327–1332

    Google Scholar 

  32. Newman SP, Pellow PGD, Clay MM, Clarke SW. Evaluation of jet nebulisers for use with gentamicin solution. Thorax 1985;40: 671–676

    Google Scholar 

  33. Thomas SHL, O'Doherty MJ, Page CJ, Nunan To. Variability in the measurement of nebulised aerosol deposition in man. Clin Sci 1991;12: 767–775

    Google Scholar 

  34. Thomas SHL, O'Doherty MJ, Page CJ, Nunan TO, Bateman NT. Which apparatus for inhaled pentamidine? A comparison of pulmonary deposition via eight nebulisers. Eur Respir J 1991;4: 616–622

    Google Scholar 

  35. O'Doherty MJ, Thomas SHL, Page CJ, Nunan TO, Treacher DF. Delivery of a nebulised aerosol to a lung model during mechanical ventilation. Effect of ventilator settings and nebuliser type, position and volume of fill. Am Rev Respir Dis 1992;146: 383–388

    Google Scholar 

  36. Clay MM, Pavia D, Newman SP, Lennard-Jones T, Clarke SW. Assessment of jet nebulisers for lung aerosol therapy. Lancet 1983;11: 592–594

    Google Scholar 

  37. Lang RJ. Ultrasonic atomisation of fluids. J Acoust Soc Am 1962;34: 6–9

    Google Scholar 

  38. Pillay M, Akkermans JA, Cox PH. A high efficiency ultrasound nebuliser for radioaerosol studies of the lungs. Eur J Nucl Med. 1987;13: 331–334

    Google Scholar 

  39. Miller RF, Kocjan G, Buckland J. Sputum induction for the diagnosis of pulmonary disease in HIV positive patients. J Infect 1991;23: 5–15

    Google Scholar 

  40. Kohn H, de Jong R, Konig B, Mostbeck A. Aerosol delivery system with high lung deposition efficiency. J Aerosol Med 1988;1: 227

    Google Scholar 

  41. Kohn H, Mostbeck A, Bachmayr S et al. 99mTc-DTPA aerosol for same day post perfusion ventilation imaging: results of a mulitcentre study. Eur J Nucl Med 1993;20: 4–9

    Google Scholar 

  42. Miller RF, Jarritt PH, Lui D, Kilery J, Semple SJG, Ell PJ. The APE nebuliser — a new delivery system for the alveolar targeting of particulate technetium 99m DTPA. Eur J Nucl Med 1991;18: 164–170

    Google Scholar 

  43. Burch WM, Sullivan PJ, Mc Laren CJ. Technegas a new ventilation agent for lung scanning. Nucl Med Commun 1986;7: 865–871

    Google Scholar 

  44. Rojas-Burke J. High hopes for Technegas. J Nucl Med 1991;32(11): 24N-30N

    Google Scholar 

  45. Strong JC, Agnew JE. The particle size distribution of technegas and its influence on regional lung deposition. Nucl Med Commun 1989;10: 425–430

    Google Scholar 

  46. Newman SP, Moren F, Pavia D, Little F, Clarke SW. Deposition of pressurised suspension aerosols inhaled through extension devices. Am Rev Respir Dis 1981;124: 317–320

    Google Scholar 

  47. Newman SP, Millar AB, Lennard-Jones TR, Moren F, Clarke SW. Improvement of pressurised aerosol deposition with Nebuhaler spacer device. Thorax 1984;39: 935–941

    Google Scholar 

  48. Vidgren MT, Paronen TP, Karkkainen A, Karjalainen P. Effect of extension devices on the drug deposition from inhalation aerosols. Int J Pharm 1987;39: 107–112

    Google Scholar 

  49. Newman SP, Weisz AWB, Talaee N, Clarke SW. Improvement of drug delivery with a breath actuated pressurised aerosol for patients with a poor inhaler technique. Thorax 1991;46: 712–716

    Google Scholar 

  50. Davis SS, Hardy JG, Newman SP, Wilding IR. Gamma scintigraphy in the evaluation of pharmaceutical dosage forms. Eur J Nucl Med 1992;19: 971–986

    Google Scholar 

  51. Lippman M, Albert RE. The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract. Am Ind Hyg Assoc J 1969;30: 257–275

    Google Scholar 

  52. Asmundsson T, Johnson RF, Kilburn KH, Goodrich JK. Efficiency of nebulisers for depositing saline in human lung. Am Rev Respir Dis 1973;108: 506–512

    Google Scholar 

  53. Newman SP, Woodman G, Clarke SW. Deposition of carbenicillin aerosols in cystic fibrosis: effects of nebuliser system and breathing pattern. Thorax 1988;43: 318–322

    Google Scholar 

  54. Ruffin RE, Dolovich MB, Wolff RK, Newhouse MT. The effects of preferential deposition of histamine in the human airway. Am Rev Respir Dis 1978;117: 485–491

    Google Scholar 

  55. Macey DJ, Marshall R. Absolute quantitation of radiotracer uptake in the lungs using a gamma camera. J Nucl Med 1982;23: 731–735

    Google Scholar 

  56. Fleming JS. A technique for the absolute measurement of activity using a gamma camera and computer. Phys Med Biol 1979;24: 176–180

    Google Scholar 

  57. Wu RK, Siegel JA. Absolute quantitation of radioactivity using the buildup factor. Med Phys 1984;11: 189–192

    Google Scholar 

  58. Siegel JA, Wu RK, Maurer AH. The buildup factor: effect of scatter on absolute volume determination. J Nucl Med 1985;26: 390–394

    Google Scholar 

  59. Siegel JA. The effect of source size on the buildup factor calculation of absolute volume. J Nucl Med 1985;26: 1319–1322

    Google Scholar 

  60. Fleming JS. Technique for the use of standard outlines for attenuation correction and quantification in SPECT. Nucl Med Commun 1990;11: 685–696

    Google Scholar 

  61. Perring S, Summers Q, Fleming JS, Holgate S. The quantitative assessment of pulmonary penetration for aerosol administered by metered dose inhaler using aligned CT and SPECT data sets [abstract]. Nucl Med Commun 1990;11: 893

    Google Scholar 

  62. Phipps PR, Gonda I, Bailey DL, Borham P, Bautovich G, Anderson SD. Comparison of planar and tomographic gamma scintigraphy to measure the penetration index of inhalation aerosols. Am Rev Respir Dis 1989;139: 1516–1523

    Google Scholar 

  63. Forge NI, Mountford PJ, O'Doherty MJ. A comparison of quantification techniques in planar radionuclide lung imaging. Eur J Nucl Med 1993;20: 10–15

    Google Scholar 

  64. Chan TL, Lippmann M. Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. Am Ind Hyg Assoc J 1980;41: 399–409

    Google Scholar 

  65. Stahlhofen W, Gebhart J, Heyder J. Biological variability of regional deposition of aerosol particles in the human respiratory tract. Am Ind Hyg Assoc J 1981;42: 348–352

    Google Scholar 

  66. Horsfield K, Cumming G. Angles of branching and diameters of branches in the human bronchial tree. Bull Math Biophys 1967;29: 245–249

    Google Scholar 

  67. Horsfield K, Dart G, Olson DE, Filley GF, Cumming G. Models of the human bronchial tree. J Appl Physiol 1971;31: 207–217

    Google Scholar 

  68. Koblinger L, Hofmann W. Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys Med Biol 1985;30: 541–556

    Google Scholar 

  69. Foster WM, Langenback EG, Smaldone GC, Bergofsky EH, Bohning DE. Flow limitations on expiration induces central particle deposition and disrupts effective flow of airway mucus. Ann Occup Hyg 1988;Suppl 6: 101–105

    Google Scholar 

  70. Foster WM. Editorial: is 24 hour lung retention an index of alveolar deposition? J Aerosol Med 1988;1: 1

    Google Scholar 

  71. Smaldone GC, Perry RJ, Bennet WD, Messina MS, Zwang J, Ilowite J. Interpretation of “24 hour lung retention” in studies of mucociliary clearance. J Aerosol Med 1988;1: 11–16

    Google Scholar 

  72. Camner P. Clearance of particles from the human tracheobronchial tree. Clin Sci 1980;59: 79–85

    Google Scholar 

  73. Pavia D, Bateman JRM, Clarke SW. Deposition and clearance of inhaled particles. Bull Eur Physiopathol Respir 1980;16: 335–366

    Google Scholar 

  74. Stahlhofen W, Gebhart J, Rudolf G, Scheuch G. Measurement of lung clearance with pulses of radioactively labelled aerosols. J Aerosol Sci 1986;17: 333–337

    Google Scholar 

  75. Pavia D, Thomson ML, Clarke SW, Shannon HS. Effect of lung function and mode of inhalation on penetration of aerosol into the human lung. Thorax 1977;32: 194–197

    Google Scholar 

  76. Muir DCF, Davies CN. The deposition of 0.5 μm diameter aerosols in the lungs of man. Ann Occup Hyg 1967;10: 161–174

    Google Scholar 

  77. Dennis WL. The effect of breathing rate on the deposition of particles in the human respiratory system. In: Walton WH, ed. Inhaled particles III.: Unwin Brothers; Old Woking Surrey 1971: 91–102

    Google Scholar 

  78. Woodman PS, Courts CT, Mole DR, Dendy PP, Higenbottam TW. Sites of deposition of aqueous aerosols: a study of efficiency of delivery systems for lung ventilation imaging in man. Nucl Med Commun 1989;10: 171–180

    Google Scholar 

  79. Goldberg IS, Lourenco RV. Deposition of aerosols in pulmonary disease. Arch Intern Med 1973;131: 88–91

    Google Scholar 

  80. Dolovich M, Ryan G, Newhous MT. Aerosol penetration into the lung: influence on airway responses. Chest 1981;80 (Suppl): 834–836

    Google Scholar 

  81. Newman SP, Pavia D, Clarke SW. How should a pressurised beta-adrenergic bronchodilator be inhaled. Eur J Respir Dis 1981;62: 3–21

    Google Scholar 

  82. Pavia D, Thompson ML. The fractional deposition of inhaled 2 and 5 micron particles in the alveolar and tracheobronchial regions of the healthy human lung. Ann Occup Hyg 1976;19: 109–114

    Google Scholar 

  83. Ilowite JS, Gorvoy JD, Smaldone GC. Quantitative deposition of aerosolised gentamicin in cystic fibrosis. Am Rev Respir Dis 1987;136:1445–1449

    Google Scholar 

  84. Sanchis J, Dolovich M, Chalmers R, Newhouse M. Quantitation of regional aerosol clearance in the normal lung. J Appl Physiol 1972;33: 757–762

    Google Scholar 

  85. O'Doherty MJ, Thomas SHL, Page CJ, Bradbeer C, Nunan TO, Bateman NT. Does inhalation of pentamidine in the supine position increase deposition in the upper part of the lung? Chest 1988;97: 1343–1348

    Google Scholar 

  86. Bennett WD, Smaldone GC. Human variation in the peripheral air-space deposition of inhaled particles. J Appl Physiol 1987;62: 1603–1610

    Google Scholar 

  87. Dickenson G, Smaldone GC. Particle deposition and failure of prophylaxis using aerosolized pentamidine [abstract]. Am Rev Respir Dis 1990;131: A150

    Google Scholar 

  88. O'Doherty MJ, Thomas SHL, Page CJ, Blower PJ, Bateman NT, Nunan TO. Lung deposition of aerosolised pentamidine using a direct radiolabel 123I iodo-pentamidine. Nucl Med Commun 1993;14:8–11

    Google Scholar 

  89. O'Doherty M, Thomas S, Page C, Bradbeer CS, Nunan T, Bateman N. Pulmonary deposition of nebulised pentamidine. The effect of nebuliser type, dose and volume of fill. Thorax 1990;45: 460–464

    Google Scholar 

  90. O'Doherty MJ, Thomas S, Page C, Bradbeer C, Barlow D, Nunan TO, Bateman NT. Differences in the relative efficiency of nebulisers for pentamidine administration. Lancet 1988;II: 1283–1286

    Google Scholar 

  91. Clay MM, Clarke SW. Effect of nebulised aerosol size on lung deposition in patients with mild asthma. Thorax 1987;42: 190–194

    Google Scholar 

  92. Clay MM, Pavia D, Clarke SW. Effect of aerosol particle size on bronchodilation with nebulised terbutaline in asthmatic subjects. Thorax 1986;41: 364–368

    Google Scholar 

  93. Newman Sp, Pellow PG, Clarke SW. Choice of nebulisers and compressors for delivery of carbenicillin aerosol. Eur J Respir Dis 1986;69: 160–168

    Google Scholar 

  94. O'Callahan C, Clarke AR, Milner AD. Inaccurate calculation of drug output from nebulisers. Eur J Pediatr 1989;148: 473–474

    Google Scholar 

  95. Newman SP, Pellow PG, Clarke SW. Droplet size distributions of nebulized aerosols for inhalation therapy. Clin Phys Physiol Meas 1986;7: 139–146

    Google Scholar 

  96. Tsanakas JN, Wilson AJ, Boon AW Evaluation of nebulisers for bronchial challenge tests. Arch Dis Child 1987;62: 506–508

    Google Scholar 

  97. Wanner A, Brodnan JM, Perez J, Henke KG, Kim CS. Variability of airway responsiveness to histamine aerosol in normal subjects. Role of deposition. Am Rev Respir Dis 1985;131:3–7

    Google Scholar 

  98. O'Riordan TG, Greco MJ, Perry RJ, Smaldone GC. Nebulizer function during mechanical ventilation. Am Rev Respir Dis 1992;145: 1117–1122

    Google Scholar 

  99. Fuller HD, Dolovich MB, Posmituck G, Wong Pack W, Newhouse MT. Pressurised aerosol versus jet aerosol delivery to mechanically ventilated patients. Comparison of dose to the lungs. Am Rev Respir Dis 1990;141: 440–444

    Google Scholar 

  100. MacIntyre NR, Silver RM, Miller CW, Schuler F, Coleman RE. Aerosol delivery in intubated, mechanically ventilated patients. Crit Care Med 1985;13: 81–84

    Google Scholar 

  101. Thomas SHL, O'Doherty MJ, Fidler H, Page CJ, Nunan TO, Treacher DF. Aerosol deposition during mechanical ventilation. Thorax 1993;48: 154–159

    Google Scholar 

  102. Smaldone GC, Perry RJ, Deutsch DG. Characteristics of nebulisers used in the treatment of AIDS related Pneumocystis carinii pneumonia. J Aerosol Med 1988;1: 113–126

    Google Scholar 

  103. O'Doherty MJ, Thomas SHL, Page C, Clarke AR, Mitchell D, Heduan E, Nunan TO, Bateman NT. Does 99mTc human serum albumin alter the characteristics of nebulised pentamidine isethionate? Nucl Med Commun 1989;10: 523–529

    Google Scholar 

  104. Perry RJ, O'Riordan TG, Smaldone GC. Inaccuracies in measurements of nebulised drug delivery. Am Rev Respir Dis 1991;143: A708

    Google Scholar 

  105. Nolop KB, Braude S, Royston D, Maxwell DL, Hughes JMB. Positive end expiratory pressure increases pulmonary clearance of inhaled 99m-Tc DTPA in nonsmokers but not in healthy smokers. Bull Eur Physiopathol Respir 1987;23: 57–60

    Google Scholar 

  106. Barrowcliffe MP, Zanelli GD, Jones JG. Pulmonary clearance of radiotracers after positive end expiratory pressure or acute lung injury. J Appl Physiol 1989;66: 288–294

    Google Scholar 

  107. Clarke SW. Inhaler therapy. Q J Med 1988;67: 355–368

    Google Scholar 

  108. Fraser I, DaVall A, Dolovich M, Newhouse MT. Therapeutic aerosol delivery in ventilator systems. Am Rev Respir Dis 1981;123:107

    Google Scholar 

  109. Lawford P, Jones BJM, Milledge JS. Comparison of intravenous and nebulised salbutamol in initial treatment of severe asthma. Br Med J 1978;I: 84

    Google Scholar 

  110. Gay PC, Rodarte JR, Tayyab M, Hubmayr RD. Evaluation of bronchodilator responsiveness in mechanically ventilated patients. Am Rev Respir Dis 1987;136: 880–885

    Google Scholar 

  111. Wegener T, Wretman S, Sandhagen B, Nystrom SO. Effect of ipratropium bromide aerosol on respiratory function in patients under ventilator treatment. Acta Anaesthesiol Scand 1987;31: 652–654

    Google Scholar 

  112. Legare M, Petrof B, Simkovitz P, Goldberg P, Gottfried S. Aerosolised ipratopium bromide in mechanically ventilated COPD patients [abstract]. Am Rev Respir Dis 1988;137: 60

    Google Scholar 

  113. Ahrens RC, Ries RA, Popendorf W, Wiese JA. The delivery of therapeutic aerosols through endotracheal tubes. Pediatr Pulmonol 1986;2: 19–26

    Google Scholar 

  114. Flavin M, MacDonald M, Dolovich M, Coates G, O'Brodovich H. Aerosol delivery to the rabbit lung with an infant ventilator. Pediatr Pulmonol 1986;2: 35–39

    Google Scholar 

  115. Alderson PO, Secher-Walker RH, Stominger DB, Markham BS, Hill RL. Pulmonary deposition of aerosols in children with cystic fibrosis. J Pediatr 1974;84: 479–484

    Google Scholar 

  116. O'Doherty MJ, Thomas SHL, Gibb D et al. Deposition of aerosolized pentamidine in children. Thorax 1993;48:220–226

    Google Scholar 

  117. Collis GG, Cole CH, Le Souef PN. Dilution of nebulised aerosols by air entrainment in children. Lancet 1990;336: 341–343

    Google Scholar 

  118. Le Souef PN. Validity of methods used to test airway responsiveness in children. Lancet 1992;339: 1282–1284

    Google Scholar 

  119. Wolfsdorf J, Swift DL, Avery ME. Mist therapy reconsidered; an evaluation of the respiratory deposition of labelled water aerosols produced by jet and ultrasonic nebulizers. Pediatrics 1969;43: 799–808

    Google Scholar 

  120. Cook G, Clarke SEM. An evaluation of Technegas as a ventilation agent compared with krypton-81m in the scintigraphic diagnosis of pulmonary embolism. Eur J Nucl Med 1992;19: 770–774

    Google Scholar 

  121. Hilson AJW, Pavia D, Diamond PD, Agnew JE. An ultrafine 99m-Tc aerosol (Technegas) for lung ventilation scintigraphy — a comparison with Kr-81m. J Nucl Med 1989;30: 744

    Google Scholar 

  122. Vezina W, Chamberlain M, Vinitski S, King M, Nicholson R, Morgan WK. Radioaerosol ventilation imaging in ventilator-dependent patients. Technical considerations. Clin Nucl Med 10: 759–766

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M.J. O'Doherty

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Doherty, M.J., Miller, R.F. Aerosols for therapy and diagnosis. Eur J Nucl Med 20, 1201–1213 (1993). https://doi.org/10.1007/BF00171019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171019

Key words

Navigation