Skip to main content
Log in

Anomalous wear behavior of MoS2 films in moderate vacuum and dry nitrogen

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

440C steel thrust ball bearing races lubricated with 1 μm thick sputtered films of MoS2 were tested in the unidirectional and oscillatory modes against bare steel balls in moderate (10−4−10−5 Pa ≈ 10−6−10−7 Torr) vacuum and in 1 atmosphere of 99.999% pure (⩽ 1 ppm water) N2 in the same unbaked environmental chamber. Over 90% of the residual gases in the chamber vacuum consisted of H2O vapor. The bearings operated in N2 showed substantially longer lives compared to the specimens tested in vacuum. Scanning electron microscope (SEM) tribometry was also performed on an MoS2 film powder-burnished onto a 440C flat. This flat was repeatedly oscillated against bare, hemispherical-tipped 440C pins on fresh wear tracks in the same type of N2 and column vacuum of ~10−3 Pa ≈ 10−5 Torr itself containing over 90% residual H2O. The SEM-generated results on the burnished film confirmed the same, atmosphere-dependent difference in wear life observed with the sputtered layers. Varying the moisture content of the burnished flat and its immediate environment by cryosorption predictably manipulated the coefficient of friction and wear life of MoS2. The various possible causes of this perplexing phenomenon are reviewed, and a plausible hypothesis is offered attributing the unexpected wear life reduction to the physico-chemical consequences of residual H2O hydrogen-bonding to the oxidized and/or hydrated edge and basal plane sites of MoS2 in moderate vacuum. The site-specific sorption of water is severely hindered in 1 atm N2 by the gas molecules disrupting the H-bonding mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.W. Roberts, in: Space Mechanisms and Tribology, Proc. 4th European Symp. (ESA SP-299, March 1990) p. 59.

  2. E.W. Roberts, Thin Solid Films 181 (1989) 461.

    Google Scholar 

  3. T. Spalvins, NASA TM-105292 (1991).

  4. P.D. Fleischauer and M.R. Hilton, in: New Materials Approaches to Tribology: Theory and Applications, Mater. Res. Soc. Proc., Vol. 140, eds. L.E. Pope, L.L. Fehrenbacher and W.O. Winer (Pittsburgh, 1989) p. 9.

  5. R.A. Rowntree and M.J. Todd, in: New Materials Approaches to Tribology: Theory and Applications, Mater. Res. Soc. Proc., Vol. 140, eds. L.E. Pope, L.L. Fehrenbacher and W.O. Winer (Pittsburgh, 1989) p. 21.

  6. M.R. Hilton and P.D. Fleischauer, Surf. Coat. Technol. 54/55 (1992) 435.

    Google Scholar 

  7. D.E. Peebles and J.A. Ohlhousen, Sandia Rept. No. SAND-92–0052, Sandia National Labs, Albuquerque, NM, May 1992.

    Google Scholar 

  8. P.D. Fleischauer and R. Bauer, Tribol. Trans. 31 (1988) 239.

    Google Scholar 

  9. S.V. Didziulis, M.R. Hilton, R. Bauer and P.D. Fleischauer, Aerospace Report No. TOR-92(2064)-1, The Aerospace Corp., El Segundo, CA, 15 October 1992.

    Google Scholar 

  10. V. Buck, Thin Solid Films 139 (1986) 157.

    Google Scholar 

  11. M.R. Hilton, R. Bauer and P.D. Fleischauer, Thin Solid Films 188 (1990) 219.

    Google Scholar 

  12. M.R. Hilton and P.D. Fleischauer, in: New Materials Approaches to Tribology: Theory and Applications, Mater. Res. Soc. Proc., Vol. 140, eds. L.E. Pope, L.L. Fehrenbacher and W.O. Winer (Pittsburgh, 1989) p. 227.

  13. J. Halling, ASME Trans. J. Basic Eng. March (1966) pp. 213–220.

  14. M.N. Gardos, H.-S. Hong and W.O. Winer, Tribol. Trans. 33 (1990) 209.

    Google Scholar 

  15. M.N. Gardos, WRDC-TR-90–4096, Vol. 1, Hughes Aircraft Co., El Segundo, CA 90245, November 1990.

    Google Scholar 

  16. S.V. Didziulis, P.D. Fleischauer, B.L. Soriano and M.N. Gardos. Surf. Coat. Technol. 43/44 (1990) 652

    Google Scholar 

  17. M.N. Gardos, WL-TR-4089, Vol. 1, Hughes Aircraft Co., El Segundo, CA, August 1993.

    Google Scholar 

  18. M.N. Gardos, in: Synthetic Diamond: Emerging CVD Science and Technology, Electrochem. Soc. Monograph, eds. K.E. Spear and J.P. Dismukes (Wiley, New York, 1994) ch. 12, p. 419.

    Google Scholar 

  19. M.N. Gardos and K.V. Ravi, Dia. Films Technol. 4 (1994) 139.

    Google Scholar 

  20. M.N. Gardos, ASLE Trans. 17 (1974) 237.

    Google Scholar 

  21. M.R. Hilton, Surf. Coat. Technol. 68/69 (1994) 407.

    Google Scholar 

  22. G.B. Hopple, J.E. Keem and S.H. Loewenthal, Wear 162–164 (1993) 919.

    Google Scholar 

  23. J.M. Martin, C. Donnet, Thg. Le Mogne and Th. Epicier, Phys. Rev. B 48 (1993) 10, 583.

    Google Scholar 

  24. P. Arnoldy, J.C.M. de Jonge and J.A. Moulijn, J. Phys. Chem. 89 (1985) 4517.

    Google Scholar 

  25. R.J. Saykally and G.A. Blake, Science 259 (1993) 1570.

    Google Scholar 

  26. S. Ross and A. Sussman, J. Phys. Chem. 59 (1955) 889.

    Google Scholar 

  27. E.V. Ballou and S. Ross, J. Phys. Chem. 57 (1953) 653.

    Google Scholar 

  28. F.H. Stillinger, Science 209 (1980) 451.

    Google Scholar 

  29. B. Fubini, M. Volante, V. Bolis and E. Giamello, J. Mater. Sci. 24 (1989) 549.

    Google Scholar 

  30. R.R.M. Johnston and A.J.W. Moore, Wear 7 (1964) 498.

    Google Scholar 

  31. L.A. Bursill, Proc. Roy. Soc. A 311 (1969) 267.

    Google Scholar 

  32. W. Thöni and P.B. Hirsch, Phil. Mag. 33 (1976) 639.

    Google Scholar 

  33. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979) p. 651.

    Google Scholar 

  34. J.L. Keddie, P.V. Braun and E.P. Gianellis, J. Am. Ceram. Soc. 76 (1993) 2529.

    Google Scholar 

  35. Y. Kim and C.M. Lieber, Science 257 (1992) 375.

    Google Scholar 

  36. A.I. Brudnyi and A.F. Karmadonov, Wear 33 (1975) 243.

    Google Scholar 

  37. T.F. Hayden, J.A. Dumesic, R.D. Sherwood and R.T.K. Baker, J. Catal. 105 (1987) 299.

    Google Scholar 

  38. A. Vegiri and S.C. Farantos, J. Chem. Phys. 98 (1993) 4059.

    Google Scholar 

  39. R.P. Burns and D.E. Pierce, in: New Materials Approaches to Tribology: Theory and Applications, Mater. Res. Soc. Proc., Vol. 140, eds. L.E. Pope, L.L. Fehrenbacher and W.O. Winer (Pittsburgh, 1989) p. 377.

  40. D.E. Pierce, R.P. Burns, H.M. Dauplaise and L.J. Mizerka, Tribol. Trans. 34 (1991) 205.

    Google Scholar 

  41. K.A. Ross and M.J. Westphal, J. Appl. Phys. 75 (1994) 408.

    Google Scholar 

  42. W.E. Carlos and M.W. Cole, Surf. Sci. 91 (1980) 339.

    Google Scholar 

  43. S. Suzuki, P.G. Green, R.E. Bumgardner, S. Dasgupta, W.W. Goddard III and G.A. Blake, Science 257 (1992) 942.

    Google Scholar 

  44. R. J. Good and E. Elbing, Ind. Eng. Chem. 62 (3) (1970) 54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardos, M.N. Anomalous wear behavior of MoS2 films in moderate vacuum and dry nitrogen. Tribol Lett 1, 67–85 (1995). https://doi.org/10.1007/BF00157977

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00157977

Keywords

Navigation