Skip to main content
Log in

The essential mechanics of conchoidal flaking

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Flaked stone tools are the most durable and therefore the most common artifacts available to archaeologists for tracing the development of early Man. However, the essential mechanics of conchoidal flake formation has not yet been described. In order to successfully create a relatively thin flake that does not terminate prematurely, the direction of the flaking force has to be reasonably precise. We show that the direction of the flaking force is determined mainly by the stiffness of the flake, the actual angle of the blow or impulse having relatively little effect. Long thin flakes can be easily produced because this direction of the flaking force is very close to that necessary to produce local symmetry at the tip of the crack propagating parallel to the surface of the stone.

Résumé

Les outils en pierre taillée sont les témoignages les plus durables et, dès lors, les plus courants à disposition des archéologues pour traquer le développement des premiers hommes. On n'a cependant pas encore décrit les mécanismes essentiels de la formation d'une écaille conchoïdale. Pour créer avec succès une écaille relativement mince qui ne soit pas prématurément trop courte, il faut que le direction de la force d'écaillage soit relativement précise. On démontre que la direction de cette force est essentiellement déterminée par la raideur de l'écaille, l'angle réel de percussion ayant, pour sa part, un effet relativement peu important. Il est possible de réaliser des écailles longues et minces dès lors que la direction de la force d'écaillage est très voisine de celle nécessaire à produire une symétrie locale à l'extrémité d'une fissure se propageant parallèlement à la surface de la pierre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lawn and R. Wilshaw, Journal of Materials Science 10 (1975) 1049–81.

    Google Scholar 

  2. A. Faulkner, Mechanical Principles of Flintworking, Doctoral dissertation, Washington State University (1972).

  3. F. von Kerkhof and H. Müller-Beck, Glastechnische Berichte 42 (1969) 439–48.

    Google Scholar 

  4. J.G. Fonseca, J.D. Eshelby and C. Atkinson, International Journal of Fracture Mechanics 7 (1971) 435–47.

    Google Scholar 

  5. B. Cotterell and J. Kamminga, in Lithic Use-Wear Analysis, B. Hayden, Editor, Academic Press (1979) 97–112.

  6. J. Kamminga, Over the Edge, Functional Analysis of Australian Stone Tools, Occasional Papers of Anthropology, Anthropology Museum, University of Queensland, 12 (1982).

  7. L.H. Keeley, Experimental Determination of Stone Tool Uses, University of Chicago Press (1980).

  8. B. Gross and J.E. Srawley, Stress-Intensity Factors by Boundary Collocation for Single Edge-Notch Specimens Subject to Splitting Forces, NASA TN-D3295 (1966).

  9. M.J. Fernandes, Determination of the Stress Intensity Factors, and the First Three Non-Zero Matrix Coefficients for the Compact Tension Specimen Subjected to Mode I and Mode II Crack Tip Loading, Master of Engineering Science thesis, Sydney University (1977).

  10. R.M.L. Foote and V.T. Buchwald, International Journal of Fracture 39 (1985).

  11. M.L. Williams Journal of Applied Mechanics 24 (1957) 109–14.

    Google Scholar 

  12. F. Erdogan and G.C. Sih, Journal of Basic Engineering 85 (1963) 519–27.

    Google Scholar 

  13. I. Finnie and A. Saich, International Journal of Fracture 9 (1973) RCR 484–6.

    Google Scholar 

  14. P.D. Ewing and J.G. Williams, International Journal of Fracture 10 (1974) RCR 135.

    Google Scholar 

  15. P.D. Ewing, J.L. Swedlow and J.G. Williams, International Journal of Fracture 12 (1976) 85–93.

    Google Scholar 

  16. R. Streit and I. Finnie, Experimental Mechanics 20 (1980) 17–23.

    Google Scholar 

  17. B. Cotterell, International Journal of Fracture Mechanics 1 (1965) 96–103.

    Google Scholar 

  18. M.C. Hussain, S.L. Pu and J. Underwood, in Fracture Analysis, Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II, ASTM STP 560 (1973) 2–28.

  19. K. Palaniswamy and W.G. Knauss, in Mechanics Today, S. Nemat-Nasser, Editor, Vol. 4, Pergamon Press (1978) 87–148.

  20. H.J. Schindler and M. Sayir, International Journal of Fracture 25 (1984) 95–107.

    Google Scholar 

  21. G.C. Sih, Engineering Fracture Mechanics 5 (1973) 365–77.

    Google Scholar 

  22. G.C. Sih, in Mechanics of Fracture, Vol. 1, Methods, Analysis and Solutions of Crack Problems, Noordhoff (1973).

  23. G.C. Sih, International Journal of Fracture 10 (1974) 305–21.

    Google Scholar 

  24. B. Cotterell and J.R. Rice, International Journal of Fracture 16 (1980) 155–69.

    Google Scholar 

  25. N.V. Banichuk, Izv. An SSR, MIT, 7, 2 (1970) 130–7 (in Russian).

    Google Scholar 

  26. R.V. Gol'dstein and R.L. Salganik, Izv. An SSR, MIT, 7, 3 (1970) 69–82 (in Russian).

    Google Scholar 

  27. R.V. Gol'dstein and R.L. Salganik, International Journal of Fracture 10 (1974) 507–23.

    Google Scholar 

  28. D.E. Crabtree, American Antiquity 33 (1968) 466–78.

    Google Scholar 

  29. V.K. Kinra and H. Kolsky, Engineering Fracture Mechanics 9 (1977) 423–33.

    Google Scholar 

  30. B. Cotterell and J. Kamminga, Finials on Stone Flakes, Journal of Archaeological Science, in press.

  31. B. Cotterell, International Journal of Fracture 2 (1966) 526–33.

    Google Scholar 

  32. G.L. Isaac, in Advances in World Archaeology, F. Wendorf and A.E. Close, Editors, 3 Academic Press, New York (1984) 1–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotterell, B., Kamminga, J. & Dickson, F.P. The essential mechanics of conchoidal flaking. Int J Fract 29, 205–221 (1985). https://doi.org/10.1007/BF00125471

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125471

Keywords

Navigation