Skip to main content
Log in

Conformational analysis. Part 16 Conformational free energies in substituted piperidines and piperidinium salts

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The conformational free energies (-ΔGo) of a number of 4-substituted piperidines and piperidinium salts have been determined by the J-value method. For the 4-substituted piperidines (R=Me, Phenyl, CO2Et, Br, OH, F) the relative conformer energies are almost identical to those of the analogous cyclohexanes.

The methyl and phenyl compounds showed no change in the couplings on protonation, implying no change in the conformer energies. In constrast, in the remaining compounds with polar 4-substituents an almost constant stabilisation of the axial conformer of ca. 0.7–0.8 kcal mol-1 was observed on protonation. In three cases (R=F, OH and Br) the conformational preferences is reversed on protonation and the axial form is favoured.

The conformer energies of both the free bases and the piperidinium salts can be quantitatively predicted by molecular mechanics calculations using the COSMIC force-field, in which the electrostatic interactions are calculated by a simple Coulombic model with the partial atomic charges in the molecules given by the CHARGE2 routine, and an effective dielectric constant of five. The precise agreement obtained demonstrates conclusively that the electrostatic interactions between the substituents and the protonated nitrogen are the cause of the conformational changes on protonation, and that these can be modelled successfully using existing force-fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R.J., and Rowan A.E., Part 15, Magn. Reson. Chem., 26 (1988) 1027.

    Google Scholar 

  2. Jorgenson W.J., Acc. Chem. Res., 22 (1989) 184.

    Google Scholar 

  3. Richards W.G., Quantum Pharmacology, Butterworths, London, 1979.

    Google Scholar 

  4. Abraham R.J., Hudson B.D. and Thomas W.A., J. Chem. Soc. Perkin Trans. 2 (1986) 1635.

    Google Scholar 

  5. Grootenhuis P.D.J. and Kollman P.A., J. Am. Chem. Soc., 111 (1989) 2152.

    Google Scholar 

  6. Buckner J.K. and Jorgenson W.L., J. Am. Chem. Soc., 111 (1989) 2507.

    Google Scholar 

  7. Wehner P.K. and Kollman P.A., J. Comput. Chem., 2 (1981) 287.

    Google Scholar 

  8. Abraham R.J. and Smith P.E., J. Comput.-Aided Mol. Design, 3 (1989) 175.

    Google Scholar 

  9. Abraham R.J. and Smith P.E., J. Comp. Chem., 9 (1987) 288.

    Google Scholar 

  10. Abraham R.J. and Rossetti Z.L., J. Chem. Soc. Perkin Trans. 2 (1973) 582.

    Google Scholar 

  11. Carey F.A. and Sundberg R.J., Advanced Organic Chemistry, Plenum Press, New York, 1980, Part A, p. 89.

    Google Scholar 

  12. Abraham, R.J. and Medforth, C.J., J. Chem. Soc. Chem. Commun., (1987) 1637.

  13. Abraham R.J. and Medforth C.J., Magn. Reson. Chem., 26 (1988) 334.

    Google Scholar 

  14. Booth H., Bailey J.M., Shirayda H.A.R.Y. and Trimble M.L., J. Chem. Soc. Perkin Trans. 2 (1984) 737.

    Google Scholar 

  15. Eliel E.L., Kandasamy D., Yen C. and Hargrave K.D., J. Am. Chem. Soc., 102 (1980) 3698.

    Google Scholar 

  16. Terui Y. and Tori K.J., J. Chem. Soc. Perkin Trans. 2 (1975) 127.

    Google Scholar 

  17. Booth H., Ch. 3, In Emsley J.W., Feeney J. and Sutcliffe L.H. (Eds.), Progress in NMR Spectroscopy, Vol. 5, Pergamon Press, Oxford, 1969, p. 149.

    Google Scholar 

  18. Garbisch E.W. and Griffith M.G., J. Am. Chem. Soc., 90 (1968) 6543.

    Google Scholar 

  19. Hofner D., Lesko S.A. and Binsch G., Org. Magn. Reson., 11 (1978) 179.

    Google Scholar 

  20. Abraham, R.J. and Martin, I., unpublished results.

  21. Anet F.A.L., J. Am. Chem. Soc., 84 (1962) 1053.

    Google Scholar 

  22. Huggins M.L., J. Am. Chem. Soc., 75 (1953) 4123.

    Google Scholar 

  23. Chen C.Y. and LeFevre R.J.W., Tetrahedron Lett., 45 (1965) 4057.

    Google Scholar 

  24. Vinter J.G., Davis A. dan Saunders M.R., J. Comput.-Aided Mol. Design. 1 (1987) 31.

    Google Scholar 

  25. Abraham R.J. and Haworth I.S., J. Comput.-Aided Mol. Design, 2 (1988) 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For Part 15, see Ref. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, R.J., Medforth, C.J. & Smith, P.E. Conformational analysis. Part 16 Conformational free energies in substituted piperidines and piperidinium salts. J Computer-Aided Mol Des 5, 205–212 (1991). https://doi.org/10.1007/BF00124339

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124339

Key words

Navigation