Skip to main content
Log in

Allozyme markers in forest genetic conservation

  • Review paper
  • Application of biochemical markers in forest management
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Genetic diversity is important in tree-breeding, in managing rare and endangered tree species, and in maintaining healthy populations of widespread native tree species. Allozymes are useful in determining genetic relationships among species, where they can be used to assess affiliations of rare taxa and predict relative endangerment among species. Because allozymes sometimes yield different information about genetic variation within species than revealed by other traits, when estimates of total or adaptive genetic variation are important, allozymes are best used in conjunction with other traits. Allozymes are useful for measuring direct allelic diversity when designing ex-situ and in-situ conservation strategies. We demonstrate an application of canonical trend-surface analysis for determining locations of in-situ genetic conservation areas. Allozymes also serve as useful markers in monitoring the effects of forest management and other environmental changes on genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. T. 1981. Population genetics and gene conservation in Pacific Northwest conifers, pp. 401–415. In: Scudder, G. G. and Reveal, J. L. (Eds) Evolution Today, Proceed. Second Internatl. Congr. Syst. Evol. Bio.

  • Allard, R. W. 1970. Population structure and sampling methods, pp. 97–107. In: Frankel, O. H. and Bennett, E. (Eds) Genetic Resources in Plants — Their Exploration and Conservation. Blackwell, Oxford.

    Google Scholar 

  • Asins, M. J. and Carbonell, E. A. 1987. Concepts involved in measuring genetic variability and its importance in conservation of plant genetic resources. Evolutionary Trends in Plants 1(1): 51–62.

    Google Scholar 

  • Brown, A. H. D. 1978. Isozymes, plant population genetic structure, and genetic conservation. Theor. Appl. Genet. 52:145–157.

    Google Scholar 

  • Brown, A. H. D. and Briggs, J. D. 1991. Sampling strategies for genetic variation in ex-situ collections of endangered plant species, pp. 99–122. In: Falk, D. and Holsinger, K. (Eds) Genetics and Conservation of Rare Plants. Oxford Univ. Press, NY.

    Google Scholar 

  • Brown, A. H. D. and Moran, G. F. 1981. Isozymes and the genetic resources of forest trees, pp. 1–10. In: Conkle, M.T. (Ed.) Isozymes of North American Forest Trees and Forest Insects. USDA Forest Service, Gen. Tech. Rept. PSW-48.

  • Brown, A. H. D. and Weir, B. S. 1983. Measuring genetic diversity in plant populations, pp. 219–238. In: Isozymes in Plant Genetics and Breeding. Part A. Elsevier.

  • Burnham, C. R. 1988. The restoration of the American chestnut. Am. Sci. 76:478–487.

    Google Scholar 

  • Campbell, R. K. 1986. Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genet. 35(2–3):85–96.

    Google Scholar 

  • Conkle, M. T. 1987. Electrophoretic analysis of variation in native Monetary cypress (Cupressus macrocarpa), pp. 249–256. In: Elias, T. S. (Ed) Conservation and Management of Rare and Endangered Plants. California Native Plant Society, Sacramento.

    Google Scholar 

  • Conkle, M. T. 1992. Genetic diversity — seeing the forest through the trees. This issue (pp. 5–22).

  • Conkle, M. T. and Westfall, R. D. 1984. Evaluating breeding zones for ponderosa pine in California, pp. 89–98. In: Proceedings of the Service-wide Genetics Workshop, Charleston, SC, Dec. 5–9,1983. USDA Forest Service.

  • Conkle, M. T. and Westfall, R. D. 1988. Allozyme variation of white fir in the Sierra Nevada of California. Unpublished report to the U.S.F.S. Regional Tree Improvement Program. Pacific Southwest Region.

  • Crossa, J. 1989. Methodologies for estimating the sample size required for genetic conservation of outbreeding crops. Theor. Appl. Genet. 77: 153–161.

    Google Scholar 

  • Crow, J. F. and M. Kimura. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Dusek, K. H. 1985. Update on our rarest pine. Am. Forests: 26–29; 61–63.

    Google Scholar 

  • El-Kassaby, Y. A. 1990. Genetic variation within and among conifer populations: Review and evaluation of methods, pp. 59–74. In: Hattemer, H. H., Fineschi, S., Cannata, F. and Malvolti, M. E. (Eds) Biochemical Markers in the Population Genetics of Forest Trees. APB Academic Publ. bv, The Hague.

    Google Scholar 

  • Ellstrand, N. C. 1992. Gene flow among seed plant populations. This issue (pp. 241–256).

  • Epperson, B. K. 1992. Spatial structure of genetic variation within populations of forest trees. This issue (pp. 257–258).

  • Falk, D. A. 1990. Endangered forest resources in the U.S.: Integrated strategies for conservation of rare species and genetic diversity. For. Ecol. & Manage: 91–108.

  • FAO 1975. Methodology of conservation of forest genetic resources. FAO/UNEP, Rome, 127 pp.

    Google Scholar 

  • Fins, L. and Libby, W. J. 1982. Population variation in Sequoiadendron: seed and seedling studies, vegetative propagation and isozyme variation. Silvae Genet. 31: 102–110.

    Google Scholar 

  • Frankel, O. H. 1977. Philosophy and strategy of genetic conservation in plants. Proceed. Third World Consultation on Forest Tree Breeding 1: 6–11.

    Google Scholar 

  • Frankel, O. H. and Soule, M. E. 1081. Conservation and Evolution. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Friedman, S. T. and Adams, W. T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda). Theor. Appl. Genet. 69:609–615.

    Google Scholar 

  • Furnier, G. 1984. Population Genetic Structure of Jeffrey Pine. Ph.D. dissertation. Oregon State University, Corvallis.

    Google Scholar 

  • Godfrey, R. K. and Kurz, H. 1962. The Florida torreya destined for extinction. Science 136: 900–902.

    Google Scholar 

  • Gregorius, H. R. 1980. The probability of losing an allele when diploid genotypes are sampled. Biometrics 36:643–652.

    Google Scholar 

  • Guries, R. P. 1984. Genetic variation and population differentiation in forest trees, pp. 119–131. In: Lanner, R. M. (Ed) Proceed. Eight North American Forest Biology Workshop. July 30–August 1, 1984, Logan, Utah.

  • Hagman, M. 1973. The Finnish standard stands for forestry research, pp. 67–78. In: Fowler, D. P. and Yeatman, C. W. (Eds) Proceed 13th Meeting of Committee on Forest Tree Breeding in Canada. Part 2, August 24–27, 1971. Prince George, British Columbia.

  • Hamburg, S. P. and Coghill, C. V. 1988. Historical decline of red spruce populations and climatic warming. nature 331:428–431.

    Google Scholar 

  • Hamrick, J. L. 1976. Variation and selection in western montane species. II. Variation within and between populations of white fir on an elevational transect. Theor. Appl. Genet. 47(1):27–34.

    Google Scholar 

  • Hamrick, J. L., Godt, M. J. W. and Sherman-Broyles, S. L. 1992. Factors influencing levels of genetic diversity in woody plant species. This issue (pp. 95–124).

  • Hamrick, J. L. and Godt, M. J. 1989. Allozyme diversity in plant species, pp. 43–63. In: Brown, H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Assoc., Sunderland, Mass.

    Google Scholar 

  • Hanover, J. W. 1992. Applications of terpene analysis in forest genetics. This issue (pp. 159–178).

  • Harry, D. E. 1984. Genetic structure of incense-cedar (Calocedrus decurrens). University of California, Berkeley, Ph.D. dissertation, 163 pp.

  • Kitzmiller, J. H. 1976. Tree Improvement Master Plan for the California Region. USDA Forest Service, San Francisco.

    Google Scholar 

  • Kitzmiller, J. H. 1990. Managing genetic diversity in a tree improvement program. For. Ecol. Manage. 13:131–150.

    Google Scholar 

  • Kinloch, B. B. 1972. Genetic variation in resistance to Cronartium and Peridermium rust in hard pines., pp. 445–462. In: Biology of rust resistance in forest trees. Proc. NATO-IUFRO Adv. Study Inst. Aug. 17–24,1969. USDA Misc. Pub. 1221. Washington, D.C.

  • Krugman, S. L. 1984. Policies, strategies, and means for genetic conservation in forestry, pp. 71–78. In: Yeatman, C. W., Kafton, D. and Wilkes, G. (Eds) Plant genetic resources. A conservation imperative. Am. Assoc. Adv. Sci. Selected Symposium 87. Westview, Colorado.

  • Lande, R. and Barrowclough, G. 1987. Effective population size, genetic variation, and their use in population management, pp. 87–124. In: Soule, M. E. (Ed) Viable Populations for Conservation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Ledig, F. T. 1986a. Conservation strategies for forest gene resources. For. Ecol. Manage. 14: 77–90.

    Google Scholar 

  • — 1986b. Heterozygosity, heterosis, and fitness in outbreeding plants, pp. 74–104. In: Soule, M. E. (Ed.) Conservation Biology: The Science of Scarcity and Diversity. Sinauer Assoc. Sunderland, Mass.

    Google Scholar 

  • — 1987. Genetic structure and the conservation of California's endemic and near-endemic conifers, pp. 587–594. In: Alias, T. S. (Ed) Conservation and Management of Rare and Endangered Plants. California Native Plant Society, Sacramento, California.

    Google Scholar 

  • — 1988a. The conservation of diversity in forest trees. Bioscience 38(7): 471–479.

    Google Scholar 

  • —. 1988b. Conservation of genetic diversity: The road to La Trinidad. Leslie Schaffer Lectureship in Forest Science, Oct. 27, 1988. Vancouver, British Colombia.

  • — 1992. Human impacts on genetic diversity in forest ecosystems. Oikos 63: 87–108.

    Google Scholar 

  • Ledig, F. T. and Conkle, M. T. 1983. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana). Evolution 37: 79–85.

    Google Scholar 

  • Lee, P. J. 1969. The theory and application of canonical trend surfaces. J. Geology 77(3): 303–318.

    Google Scholar 

  • Little, E. L. 1970. Names of the new world cypresses. Phytologia 20(7): 429–445.

    Google Scholar 

  • Loveless, M. D. 1992. Isozyme variation in tropical trees: patterns of genetic organization. This issue (pp. 67–94).

  • Marshall, D. R. 1989. Crop genetic resources: Current and emerging issues, pp. 267–388. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. 1989. Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Assoc. Sunderland, Mass.

    Google Scholar 

  • Marshall, D. R. and Brown, A. H. D. 1975. Optimum sampling strategies in genetic conservation, pp. 53–80. In: Frankel, O. H. and Hawkes, J. G. (Eds) Crop Genetic Resources for Today and Tomorrow. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Marshall, D. R. and Brown, A. H. D. 1981. Wheat genetic resources, pp. 21–40. In: Evans, L. T. and Peacock, W. J. (Eds) Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • McDonald, J. F. 1983. The molecular basis of adaptation: A critical review of relevant ideas and observations. Annual Rev. Ecol. Syst. 14: 77–102.

    Google Scholar 

  • Menges, E. S. 1990a. Population viability analysis for an endangered plant. Conservation Biology 4(1):52–62.

    Google Scholar 

  • Menges, E. S. 1991. The application of minimum viable population theory to planqts. In: Falk, D. and Holsinger, K. (Eds) Genetics and Conservation of Rare Plants. Oxford Univ. Press, Cary NC.

    Google Scholar 

  • Millar, C. I. 1989. Allozyme variation of bishop pine associated with pygmy forest soils in northern California. Can. J. For. Res. 19: 870–879.

    Google Scholar 

  • Millar, C. I. and Critchfield, W. B. 1986. Crossability and relationships of Pinus muricata (Pinaceae). Madrono 35(1):39–53.

    Google Scholar 

  • Millar, C. I. and Libby, W. J. 1991. Strategies for conservation of clinal, ecotypic, and disjunct population diversity in widespread species. In: Falk, D. and Holsinger, K. (Eds) Genetics and Conservation of Rare Plants. Oxford Univ. Press, Cary, NC.

    Google Scholar 

  • Millar, C. I. and Marshall, K. A. 1991. Allozyme variation in Port-Oxford-cedar; Implications for genetic conservation. For. Sci. 37: 1060–1077.

    Google Scholar 

  • Millar, C. I., Strauss, S. H., Conkle, M. T. and Westfall, R. D. 1988. Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Syst. Bot. 13(3): 351–370.

    Google Scholar 

  • Miller, P. L. 1973. Oxidant-induced community change in a mixed conifer forest, pp. 101–117. In: Naegle, J. A. (Ed) Air pollution damage to vegetation. Adv. Chem. Ser. 122.

  • Mitton, J. B. 1992. The dynamic mating systems of conifers. This issue (pp. 197–216).

  • Mitton, J. B. and Grant, M. C. 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annual Rev. Ecol. Syst. 15: 479–499.

    Google Scholar 

  • Moran, G. F. and Hopper, S. D. 1983. Genetic diversity and the insular population structure of the rare granite rock species. Eucalyptus caesia. Aust. J. Bio. 31: 161–172.

    Google Scholar 

  • Moran, G. F. and Hopper, S. D. 1987. Conservation of the genetic resources of rare and widespread eucalypts in remnant vegetation, pp. 151–162. In: Saunders, D. A., Arnold, G. W., Burbidge, A. A. and Hopkins, A. J. M. (Eds) Nature Conservation: The Role of Remnants of Native Vegetation. Beatty, Australia.

    Google Scholar 

  • Moran, G. F. 1992. Patterns of genetic diversity in Australian tree species. This issue (pp. 49–66).

  • Müller-Starck, G., Baradat, Ph. and Bergmann, F. 1992. Genetic variations within European tree species. This issue (pp. 23–47).

  • Namkoong, G. 1984. Strategies for gene conservation in forest tree breeding. In: Yeatman, C. W., Kafton, D. and Wilkes, G. (Eds) Plant genetic resources. A conservation imperative. Am. Assoc. Adv. Sci. Selected Symposium 87. Westview, Colorado.

  • Namkoong, G. 1986. Genetics and the forests of the future. Unasylva. 38: 2–18.

    Google Scholar 

  • Neale, D. B. 1985. Genetic implications of shelterwood regeneration of Douglas-fir in southwest Oregon. Forest Sci. 31(4): 995–1005.

    Google Scholar 

  • Niebling, C. R. and Conkle, M. T. 1990. Diversity of Washoe pine and comparisons with allozymes of ponderosa pine races. Can. J. For. Res. 20:298–308.

    Google Scholar 

  • Peeters, J. P. and Martinelli, J. A. 1989. Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theor. Appl. Genet. 78:42–48.

    Google Scholar 

  • Prober, S., Bell, J. C. and Moran, G. F. 1990a. A plylogenetic and allozyme approach to understanding rarity in three “green ash” eucalypts. Plant Syst. Evol. (in press).

  • Prober, S. M., Tompkins, C., Moran, G. F., and Bell, J. C. 1990b. The conservation genetics of Eucalyptus paliformis and E. parvifolia, two rare species from south-eastern Australia. Aust. J. Bot. 38: 79–95.

    Google Scholar 

  • Rajora, O. P. 1988. Allozymes as aids for identification and differentiation of some Populus maximowiczii clonal varieties. Biochem. Syst. Ecol. 16: 635–640.

    Google Scholar 

  • Reiseberg, L. H. 1988. Saving California's rarest tree. Center for Plant Conservation Newsletter 3(1):1–8.

    Google Scholar 

  • Roos, E. E. 1988, Genetic changes in a collection over time. HortScience 23(1): 86–90.

    Google Scholar 

  • Shaffer, M. L. 1981. Minimum population sizes for species conservation. Bioscience 31: 131–134.

    Google Scholar 

  • Schnabel, A. and Hamrick, J. L. 1990. Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambelii. Syst. Bot. 15(2): 240–251.

    Google Scholar 

  • Scholz, F., Gregorius, H. R. and Rudin, D. 1989. Genetic Effects of Air Pollutants in Forest Tree Populations. Springer Verlag.

  • Sirkkomaa, S. 1983. Calculations on the decrease of genetic variation due to the founder effect. Hereditas 99: 11–20.

    Google Scholar 

  • Smouse, P. E. and Bush, R. M. 1992. Evidence for the adaptive significance of allozymes in forest trees. This issue (pp. 179–196).

  • Sneath, P. H. A. and Sokai, R. R. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.

    Google Scholar 

  • Soule, M. E. (Ed) 1987. Viable Populations for Conservation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Strauss, S. H., Bousquet, J., Hipkins, V D. and Hong, Y.-P. 1992. Biochemical and molecular genetic markets in biosystematic studies of forest trees. This issue (pp. 125–158).

  • USDA Forest Service. 1988. Eldorado National Forest Land and Resource Management Plan. Pacific Southwest Region.

  • Westfall, R. D. 1991. Developing seed transfer zones, pp. 313–398. In: Fins, L. and Friedman S. T. (Eds) Quantitative Forest Genetic Handbook Kluwer Academic Publishers, Dordrecht, The Netherlands.

  • Westfall, R. D. and Conckle, M. T. 1992. Allozyme markers in breeding zone designation. This issue (pp. 279–309).

  • Wilson, B. C. 1990. Gene pool reserves of Douglas-fir. For. Ecol. Manage. 35:121–130.

    Google Scholar 

  • Wilson, E. O. (Ed) 1988. Biodiversity. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Wolf, C. B. 1948. The New World cypresses. Alisio. 1: 1–250.

    Google Scholar 

  • Zobel, B. 1977. Gene conservation — as viewed by a forest tree breeder. For. Manage. 1: 399–344.

    Google Scholar 

  • Zobel, D. B., L. F. Roth and Hawk, G. M. 1985. Ecology, pathology, and management of Post-Oxford-cedar (Chamaecyparis lawsoniana). USDA Forest Service, Gen. Tech. Rep. PNW-184.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millar, C.I., Westfall, R.D. Allozyme markers in forest genetic conservation. New Forest 6, 347–371 (1992). https://doi.org/10.1007/BF00120652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120652

Keywords

Navigation