Skip to main content
Log in

Thermal conductivity of solid CH4 and CD4

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The thermal conductivity attributable to the interaction of phonons with rotational motions of molecules is calculated for solid CH4 and CD4 in phase I (T > 20.4 K for CH4 and T > 27.1 K for CD4) in the single-mode relaxation-time approximation. The main feature of the thermal resistivity can be accounted for by one-phonon processes, where the scattering of phonons due to the thermal fluctuation of molecular rotation plays an important role. The effect of two-phonon processes becomes nonnegligible with an increase in temperature and especially for CD4. Our calculation taking the interaction up to two-phonon processes gives nearly the same result as experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Peierls, Ann. Phys. 3, 1055 (1929).

    Google Scholar 

  2. R. Berman, Adv. Phys. 2, 103 (1953).

    Google Scholar 

  3. C. Herring, Phys. Rev. 95, 954 (1954).

    Google Scholar 

  4. P. G. Klemens, Solid State Phys. 7, 1 (1958).

    Google Scholar 

  5. P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).

    Google Scholar 

  6. J. F. Goff, A. C. Verbalis, J. J. Rhyne, and P. G. Klemens, in Thermal Conductivity, Proceedings of the Eighth Conference (Plenum Press, New York, 1969), p. 21.

    Google Scholar 

  7. G. K. White and S. B. Woods, Phil. Mag. 3, 785 (1958).

    Google Scholar 

  8. C. L. Julian, Phys. Rev. 137, A128 (1965).

    Google Scholar 

  9. V. G. Manzhelii and I. N. Krupskii, Fiv. Tverd. Tela 10, 284 (1968) [Sov. Phys.—Solid State 10, 221 (1968)].

    Google Scholar 

  10. I. N. Krupskii, V. G. Manzhelii, and L. A. Koloskova, Phys. Stat. Sol. 27, 263 (1968).

    Google Scholar 

  11. I. N. Krupskii, L. A. Koloskova, and V. G. Manzhelii, J. Low Temp. Phys. 14, 403 (1974).

    Google Scholar 

  12. K. Kawasaki, Prog. Theor. Phys. 29, 801 (1963).

    Google Scholar 

  13. T. Yamamoto, Y. Kataoka, and K. Okada, J. Chem. Phys. 66, 2701 (1977).

    Google Scholar 

  14. H. Yasuda, Prog. Theor. Phys. 45, 1361 (1971).

    Google Scholar 

  15. T. Yamamoto and Y. Kataoka, J. Chem. Phys. 48, 3199 (1968); Y. Kataoka and T. Yamamoto, Prog. Theor. Phys. Suppl. Extra Number, 1968, 436; H. Yasuda, T. Yamamoto, and Y. Kataoka, Prog. Theor. Phys. 41, 859 (1969); K. Nishiyama, Y. Kataoka, and T. Yamamoto, Prog. Theor. Phys. 43, 1121 (1970).

    Google Scholar 

  16. W. Press, J. Chem. Phys. 56, 2597 (1972).

    Google Scholar 

  17. A. Hüller and W. Press, Phys. Rev. Lett. 29, 266 (1972); W. Press, A. Hüller, and H. Stiller, Phys. Rev. Lett. 32, 1354 (1974).

    Google Scholar 

  18. R. Kubo, Fluctuation, Relaxation and Resonance in Magnetic Systems (Oliver and Boyd, Edinburgh, 1962), p. 23.

    Google Scholar 

  19. A. K. Agrawal and S. Yip, Molecular Dynamics and Structure of Solids (jtNational Bureau of Standards Special Publication 301, 1969), p. pp 449.

  20. H. M. James and T. A. Keenan, J. Chem. Phys. 31, 12 (1959).

    Google Scholar 

  21. T. Yamamoto, J. Chem. Phys. 48, 3193 (1968).

    Google Scholar 

  22. T. Moriya, Prog. Theor. Phys. 16, 23 (1956); T. Moriya and K. Motizuki, Prog. Theor. Phys. 18, 183 (1957).

    Google Scholar 

  23. H. Shimizu, J. Chem. Phys. 48, 2494 (1968).

    Google Scholar 

  24. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York), Vol. 2, Chapter IV.

  25. I. Ozier and K. Fox, J. Chem. Phys. 52, 1416 (1970).

    Google Scholar 

  26. M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

    Google Scholar 

  27. H. Yasuda and T. Yamamoto, Prog. Theor. Phys. 45, 1458 (1971).

    Google Scholar 

  28. A. Abragam, The Principles of Nuclear Magnetism (Oxford at the Clarendon Press, 1961), p. 272.

  29. H. Yasuda, Bulletin of College of General Education, Nagoya City University, to be published.

  30. R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

    Google Scholar 

  31. J. Hama and T. Nakamura, Prog. Theor. Phys. 46, 1666 (1971).

    Google Scholar 

  32. S. C. Greer and L. Meyer, J. Chem. Phys. 52, 468 (1970).

    Google Scholar 

  33. P. A. Bezuglyi, N. G. Burma, and R. Kh. Minyafaev, Fiz. Tverd. Tela 8, 744 (1966) [Sov. Phys.—Solid State 8, 596 (1966)].

    Google Scholar 

  34. V. G. Manzhelii, A. M. Tolkachev, and V. G. Gavrilko, Proc. Phys. Tech. Inst. Low Temp. Kharkov 2, 41 (1968).

    Google Scholar 

  35. J. H. Colwell, E. K. Gill, and J. A. Morrison, J. Chem. Phys. 42, 3144 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the Scientific Research Foundation of the Ministry of Education. The greater part of the present work was carried out in College of General Education, Kansai University of Foreign Studies, and Department of Chemistry, Faculty of Science, Kyoto University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, H. Thermal conductivity of solid CH4 and CD4 . J Low Temp Phys 31, 223–256 (1978). https://doi.org/10.1007/BF00116238

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116238

Keywords

Navigation