Skip to main content
Log in

A Holmium-in-gold nuclear orientation thermometer for use from 1 K to 30 mK

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

A new γ-ray anisotropy thermometer which may ultimately be capable of primary thermometry from ⩾1 K down to ~30 mK is reported. The thermometer is a dilute solid solution, ~0.1 at %, of 166mHo in gold. Two different sample preparation schemes and other relevant details are discussed. The anisotropy of the 712-keV γ-ray as a function of B and T is presented. The interpretation of the anisotropy in terms of the crystal field, electronic Zeeman, and hyperfine interaction is discussed. It is concluded that incorrect crystal field parameters for HoAu are the reason for the discrepancy between theory and experiment. Relaxation effects are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. A. Shirley, Ann. Rev. Nucl. Sci. 16, 89 (1966).

    Google Scholar 

  2. W. P. Pratt, Jr., R. I. Schermer, and W. A. Steyert, J. Low Temp. Phys. 1, 459 (1969).

    Google Scholar 

  3. J. R. Sites, H. A. Smith, and W. A. Steyert, J. Low Temp. Phys. 4, 605 (1971).

    Google Scholar 

  4. W. A. Steyert, in Temperature, H. H. Plumb, ed. (Instrument of Society of America, Pittsburgh, Pennsylvania, 1972), Vol. 4, Pt. 2, p. 1253.

    Google Scholar 

  5. P. M. Berglund, H. K. Collan, G. J. Ehnholm, R. G. Gylling, and O. V. Lounasmaa, J. Low Temp. Phys. 6, 357 (1972).

    Google Scholar 

  6. W. Weyhmann, in Methods of Experimental Physics, R. V. Coleman, ed. (Academic Press, New York, 1974), Vol. 11, Chapter 9.

    Google Scholar 

  7. H. Marshak and R. J. Soulen, in Low Tempterature Physics-LT 13 (Plenum Press, New York, 1974), Vol. 4, p. 498.

    Google Scholar 

  8. K. Andres, E. Hagn, E. Smolic, and G. Eska, J. Appl. Phys. 46, 2752 (1975).

    Google Scholar 

  9. R. P. Hudson, H. Marshak, R. J. Soulen, Jr., and D. B. Utton, J. Low Temp. Phys. 20, 1 (1975).

    Google Scholar 

  10. D. S. Parker and L. R. Corruccini, Cryogenics 15, 499 (1975).

    Google Scholar 

  11. H. Marshak, National Bureau of Standards, Washington, D.C., private communications.

  12. K. S. Krane, Nuclear Data Tables A11, 407 (1973).

    Google Scholar 

  13. H. Postma, A. R. Miedema, and M. C. Eversdijk Smulders, Physica 25, 671 (1959).

    Google Scholar 

  14. H. Postma, M. C. Everdijk Smulders, and W. J. Huiskamp, Physica, 27, 245 (1961).

    Google Scholar 

  15. A. Buyrn, Nucl. Data Sheets 14, 471 (1975).

    Google Scholar 

  16. C. J. Gallagher, Jr., and S. A. Moszkowski, Phys. Rev. 111, 1282 (1958).

    Google Scholar 

  17. V. S. Shirley and C. M. Lederer, Lawrence Berkeley Report No. LBL-3450.

  18. J. D. Corbett, Rev. de Chimie Minérals 10, 239 (1973).

    Google Scholar 

  19. U. Löchner and J. D. Corbett, Inorg. Chem. 14, 426 (1975).

    Google Scholar 

  20. G. P. Dudchik, O. G. Polyachenok, and G. I. Novikov, Zh. Fiz. Khim. 43, 2145 (1969).

    Google Scholar 

  21. P. E. Rider, K. A. Gschneidner, Jr., and O. D. McMasters, Trans. AIME 233, 1488 (1965).

    Google Scholar 

  22. L. R. Edwards and S. Legvold, J. Appl. Phys. 39, 3250 (1968).

    Google Scholar 

  23. H. A. Buckmaster, R. Chatterjee, and Y. R. Shing, Phys. Stat. Sol. A13, 9 (1972).

    Google Scholar 

  24. G. William and L. L. Hirst, Phys. Rev. 185, 407 (1969).

    Google Scholar 

  25. K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).

    Google Scholar 

  26. B. Bleaney, in Magnetic Properties of the Rare Earth Metals, R. J. Elliott, ed. (Plenum Press, London, 1972), Chapter 8.

    Google Scholar 

  27. B. Perczuk, Ph. D. Thesis, Monash University, Clayton, Victoria, Australia (1975).

    Google Scholar 

  28. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

  29. G. A. Stewart, Ph. D. Thesis, Monash University, Clayton, Victoria, Austrlia (1976).

    Google Scholar 

  30. B. Perczuk and J. A. Barclay, Phys. Lett. 49A, 175 (1974).

    Google Scholar 

  31. A. P. Murani, J. Phys. C: Metal Phys. Suppl. No. 2, S153 (1970).

  32. D. Spanjaard and F. Hartmann-Boutron, J. Phys. F: Metal Phys. 3, 1178 (1973).

    Google Scholar 

  33. F. Hartmann-Boutron and D. Spanjaard, J. de Phys. 33, 285 (1972).

    Google Scholar 

  34. D. Spanjaard, J. D. Marsh, and N. J. Stone, J. Phys. F: Metal Phys. 3, 1243 (1973).

    Google Scholar 

  35. A. Benoit, J. Floquet, and J. Sanchez, Phys. Rev. B 9, 1092 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Australian Research Grants Committee and the Australian Institute of Nuclear Science and Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barclay, J.A., Bingham, D. & Blamey, P.J. A Holmium-in-gold nuclear orientation thermometer for use from 1 K to 30 mK. J Low Temp Phys 33, 343–355 (1978). https://doi.org/10.1007/BF00115004

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115004

Keywords

Navigation