Skip to main content
Log in

The Clifford algebra of differential forms

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

This paper reviews Clifford algebras in mathematics and in theoretical physics. In particular, the little-known differential form realization is constructed in detail for the four-dimensional Minkowski space. This setting is then used to describe spinors as differential forms, and to solve the Klein-Gordon and Kähler-Dirac equations. The approach of this paper, in obtaining the solutions directly in terms of differential forms, is much more elegant and concise than the traditional explicit matrix methods. A theorem given here differentiates between the two real forms of the Dirac algebra by showing that spin can be accommodated in only one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clifford W. K.: ‘On the Classification of Geometric Algebras’, paper XLIII in R.Tucker (ed.), Mathematical Papers of W. K. Clifford, Chelsea, New York, 1968.

    Google Scholar 

  2. Cartan E.: Theory of Spinors, Dover, New York, 1966.

    Google Scholar 

  3. Brauer R. and Weyl H.: ‘Spinors in n Dimensions’, Amer. J. Math. 57 (1935), 425–449.

    Google Scholar 

  4. Van derWaerden B. L.: Group Theory and Quantum Mechanics, Springer, Berlin, 1932, 1974.

    Google Scholar 

  5. Chevalley C.: The Algebraic Theory of Spinors, Columbia Univ. Press, New York, 1954.

    Google Scholar 

  6. Corson E. M.: Introduction to Tensors, Spinors, and Relativistic Wave-Equations, Chelsea, New York, 1953.

    Google Scholar 

  7. Hestenes D.: Spacetime Algebra, Gordon and Breach, New York, 1966.

    Google Scholar 

  8. Dirac P. A. M.: ‘The Quantum Theory of the Electron’, Proc. Roy. Soc. London A 117 (1928), 610–624.

    Google Scholar 

  9. Onsager L.: ‘Crystal Statistics I: A Two-Dimensional Model with an Order-Disorder Transition’, Phys. Rev. 65 (1944), 117–149.

    Google Scholar 

  10. Kaufman B.: ‘Crystal Statistics II: Partition Function Evaluated by Spinor Analysis’, Phys. Rev. 76 (1949), 1232–1243.

    Google Scholar 

  11. Schultz T. D., Mathis D. C., and Lieb E. H.: ‘Two-Dimensional Ising Model as a Soluble Problem of Many Fermions’, Rev. Mod. Phys. 36 (1964), 856–871.

    Google Scholar 

  12. Palmer J. and Tracy C.: ‘Two-Dimensional Ising Correlations’, Adv. Appl. Math. 4 (1983), 46–102.

    Google Scholar 

  13. Riesz M.: Clifford Numbers and Spinors, Lecture Notes No. 38, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, 1958.

    Google Scholar 

  14. Imaeda K.: ‘A New Formulation of Classical Electrodynamics’, Nuovo Cim. B 32 (1976), 138–159.

    Google Scholar 

  15. Salingaros N.: ‘Electromagnetism and the Holomorphic Properties of Spacetime’, J Math. Phys. 22 (1981), 1919–1925.

    Google Scholar 

  16. Gödel K.: ‘An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation’. Rev. Mod. Phys. 21 (1949), 447–450.

    Google Scholar 

  17. Jantzen R. T.: ‘Generalized Quaternions and Spacetime Symmetries’, J Math. Phys. 23 (1982), 1741–1746.

    Google Scholar 

  18. Caianiello E.: Combinatorics and Renormalization in Quantum Field Theory, Benjamin, Reading, Mass., 1973.

    Google Scholar 

  19. Salingaros N. and Dresden M.: ‘Properties of an Associative Algebra of Tensor Fields. Duality and Dirac Identities’, Phys. Rev. Lett. 43 (1979), 1–4.

    Google Scholar 

  20. Coquereaux R.: ‘Modulo 8 Periodicity of Real Clifford Algebras and Particle Physics’, Phys. Lett. B 115 (1982), 389–395.

    Google Scholar 

  21. Casalbuoni R. and Gatto R.: ‘Unified Theories for Quarks and Leptons Based on Clifford algebras’, Phys. Lett. B 90 (1980), 81–86.

    Google Scholar 

  22. Brink L. and Schwarz J. H.: ‘Quantum Superspace’, Phys. Lett. B 100 (1981), 310–312.

    Google Scholar 

  23. Horwitz L. P. and Biedenharn L. C.: ‘Exceptional Gauge Groups and Quantum Theory’, J. Math. Phys. 20 (1979), 269–298.

    Google Scholar 

  24. Chisholm J. S. R. and Farwell R.: ‘Spin Gauge Theory of Electric and Magnetic Spinors’, Proc. Roy. Soc. London A 377 (1981), 1–23.

    Google Scholar 

  25. Chisholm J. S. R. and Farwell R. S.: ‘Spin Gauge Theory of the First Generation I’, Nuovo Cim. 28A (1984), 145–183.

    Google Scholar 

  26. Chisholm J. S. R. and Farwell R. S.: ‘Spin Gauge Theory of the First Generation II’, Nuovo Cim. 82A (1984), 185–208.

    Google Scholar 

  27. Chisholm J. S. R. and Farwell R. S.: ‘Spin Gauge Theory of the First Generation III’, Nuovo Cim. 82A (1984), 210–221.

    Google Scholar 

  28. Dixon G.: ‘Algebraic Unification’, Phys. Rev. D 28 (1983), 833–843.

    Google Scholar 

  29. Barut A. O. and Basri S. A.: ‘Connection Between the Stable-Particle Model and the Integrally Charged Quark Model’, Lett. Nuovo Cim. 35 (1982), 200–204.

    Google Scholar 

  30. Basri S. A. and Barut A. O.: ‘Elementary Particle States Based on the Clifford Algebra C 7’, Int. J. Theor. Phys. 22 (1983), 691–722.

    Google Scholar 

  31. Kähler, E.: ‘Innere und Aüsserer Differentialkalkül’, Abh. Deutsch. Akad. Wiss. Berlin (Math.-Phys) No. 4, 1960.

  32. Kähler, E.: ‘Die Dirac-Gleichung’, Abh. Deutsch. Akad. Wiss. Berlin (Math.-Phys) No. 1, 1961.

  33. Kähler E.: ‘Der innere Differentialalkül’, Rend. Mat. 21 (1962), 425–523.

    Google Scholar 

  34. Kähler E.: ‘Der innere Differentialalkül’, Abh. Math. Sem. Univ. Hamburg 25 (1962), 192–205.

    Google Scholar 

  35. Salingaros N.: ‘Realization and Classification of the Universal Clifford Algebras as Lie-Admissible Algebras’, Hadronic J. 3 (1979), 339–389.

    Google Scholar 

  36. Salingaros N.: ‘Realization, Extension, and Classification of Certain Physically Important Groups and Algebras’, J. Math. Phys. 22 (1981), 226–232.

    Google Scholar 

  37. Salingaros N. and Dresden M.: ‘Physical Algebras in Four Dimensions I: The Clifford Algebra in Minkowski Spacetime’, Adv. Appl. Math. 4 (1983), 1–30.

    Google Scholar 

  38. Teitler S.: ‘The Structure of 4-spinors’, J. Math. Phys. 7 (1966), 1730–1738.

    Google Scholar 

  39. Teitler S.: ‘Lorentz Equivalence, Unitary Symmetry, and Spin Unitary Symmetry’, J. Math. Phys. 7 (1966), 1739–1743.

    Google Scholar 

  40. Hestenes D.: ‘Geometry of the Dirac Theory’, in J.Keller (ed.), Mathematics of Physical Spacetime, Facultad de Quimica, UNAM, Mexico City, 1982.

    Google Scholar 

  41. Doria F. A.: ‘A Lagrangian Formulation for Noninteracting High-Spin Fields’, J. Math. Phys. 18 (1977), 564–571.

    Google Scholar 

  42. Sobczyk G.: ‘Spacetime Algebra Approach to Curvature’, J. Math. Phys. 22 (1981), 333–342.

    Google Scholar 

  43. Greider K. R.: ‘Relativistic Quantum Theory with Correct Conservation Laws’, Phys. Rev. Lett. 44 (1980), 1718–1721.

    Google Scholar 

  44. Greider K. R.: ’A Unifying Clifford Algebra Formalism for Relativistic Fields’, Found Phys. 14 (1984), 467–506.

    Google Scholar 

  45. Rabin J.: ‘Homology Theory of Lattice Fermion Doubling’, Nucl. Phys. B 201 (1982), 315–332.

    Google Scholar 

  46. Becher P.: ‘Dirac Fermions on the Lattice’, Phys. Lett. B 104 (1981), 221–225.

    Google Scholar 

  47. Becher P. and Joos H.: ‘The Dirac-Kähler Equation and Fermions on the Lattice’, Z. Phys. C 15 (1982), 343–365.

    Google Scholar 

  48. Banks T., Dothan Y., and Horn D.: ‘Geometric Fermions’, Phys. Lett. B 117 (1982), 413–417.

    Google Scholar 

  49. Bullinaria J.: ‘Continuum and Lattice Majorana Kähler Fermions’, Phys. Lett. B 133 (1983), 411–414.

    Google Scholar 

  50. Göckeler M.: ‘Axial-Vector Anomaly for Dirac-Kähler Fermions on the Lattice’, Nuclear Phys. B 224 (1983), 508–522.

    Google Scholar 

  51. Benn I. M. and Tucker R. W.: ‘Fermi-Bose Symmetry and Kähler Fields’, Phys Lett. B 125 (1983), 47–48.

    Google Scholar 

  52. Benn I. M. and Tucker R. W.: ‘Clifford Analysis of Exterior Forms and Fermi-Bose Symmetry’, J. Phys. A 16 (1983), 4147–4153.

    Google Scholar 

  53. Benn I. M. and Tucker R. W.: ‘Fermions Without Spinors’, Comm. Math. Phys. 89 (1983), 341–362.

    Google Scholar 

  54. Mitra P.: ‘Geometry of Non-Degenerate Susskind Fermions’, Nucl. Phys. B 227 (1983), 349–364.

    Google Scholar 

  55. Gürsey F.: ‘A Dirac Algebraic Approach to Supersummetry’, Found. Phys. 13 (1983), 289–296.

    Google Scholar 

  56. Lang S.: Algebra, Addison-Wesley, Reading, Mass., 1971.

    Google Scholar 

  57. Atiyah M. F., Bott R. and Shapiro A.: ‘Clifford Modules’, Topology 3 (Suppl. 1) (1964), 3–38.

    Google Scholar 

  58. Karoubi M.: K-Theory, Springer, Berlin, 1979.

    Google Scholar 

  59. Porteous I.: Topological Geometry, 2nd edn. Cambridge Univ. Press, Cambridge, 1981.

    Google Scholar 

  60. Albert A. A.: Structure of Algebras, Amer. Math. Soc., Providence, R.I., 1961.

    Google Scholar 

  61. Ilamed Y. and Salingaros N.: ‘Algebras with Three Anticommuting Elements I: Spinors and Quaternions’, J. Math. Phys. 22 (1981), 2091–2095.

    Google Scholar 

  62. Salingaros N.: ‘Algebras with Three Anticommuting Elements II’, J. Math. Phys. 22 (1981), 2096–2100.

    Google Scholar 

  63. Wene G.P.: ‘A Generalization of the Construction of Ilamed and Salingaros’, J. Math. Phys. 24 (1983), 221–223.

    Google Scholar 

  64. Salingaros N.: ‘On the Clasification of Clifford Algebras and their Relation to Spinors in n Dimensions’, J. Math. Phys. 23 (1982), 1–7; 1231.

    Google Scholar 

  65. Salingaros N.: ‘The Relationship between Finite Groups and Clifford Algebras’, J. Math. Phys. 25 (1984), 738–742.

    Google Scholar 

  66. Dornhoff L.: Group Representation Theory, Part A, Marcel Dekker, New York, 1971.

    Google Scholar 

  67. Stein E. M. and Weiss G.: ‘Generalization of the Cauchy-Riemann Equations and Representations of the Rotation Group’, Amer. J. Math. 90 (1968), 163–196.

    Google Scholar 

  68. Hestenes D.: ‘Multivector Functions’, J. Math. Anal. Appl. 24 (1968), 467–473.

    Google Scholar 

  69. Delanghe R.: ‘On Regular-Analytic Functions with Values in a Clifford Algebra’, Math. Ann. 185 (1970), 91–111.

    Google Scholar 

  70. Delanghe R.: ‘On the Singularities of Functions with Values in a Clifford Algebra’, Math. Ann. 196 (1972), 293–319.

    Google Scholar 

  71. Brackx F., Delanghe R., and Sommen F.: Clifford Analysis, Pitman, London, 1982.

    Google Scholar 

  72. Carmichael R. D.: ‘Review of Clifford Analysis, by F. Brackx, R. Delanghe, F. Sommen’, Bull. Amer. Math. Soc. 11 (1984), 227–240.

    Google Scholar 

  73. Lounesto P.: ‘Spinor Valued Regular Functions’, in R. P.Gilbert (ed.), Plane Ellipticity and Related Problems, Contemporary Math. vol. 11, Amer. Math. Soc. Provident, R.I., 1982 pp. 155–175.

    Google Scholar 

  74. Lounesto P. and Bergh P.: ‘Axially Symmetric Vector Fields and their Complex Potentials’, Complex Variables 2 (1983), 139–150.

    Google Scholar 

  75. Ryan J.: ‘Complexified Clifford Analysis’, Complex Variables 1 (1982), 119–149.

    Google Scholar 

  76. Ryan J.: ‘Clifford Analysis with Generalized Elliptic and Quasi-Elliptic Functions’, Appl. Anal. 13 (1982), 151–171.

    Google Scholar 

  77. Ryan J.: ‘Singularities and Laurent Expansions in Complex Clifford Analysis’, Appl. Anal. 16 (1983), 33–49.

    Google Scholar 

  78. Derrick G.H.: ‘On the Square Root of the Minkowski Space’, Phys. Lett. 92A (1982), 374–376.

    Google Scholar 

  79. Derrick G. H.: ‘Eight-Dimensional Spinor Representation of the Poincare Group’, Int. J. Theor. Phys. 23 (1984), 359–393.

    Google Scholar 

  80. Ablamowicz R., Oziewicz R., and Rzewuski J.: ‘Clifford Algebra Approach to Twistors’, J. Math. Phys. 23 (1982), 231–242.

    Google Scholar 

  81. Ablamowicz R. and Salingaros N.: ‘On the Relationship Between Twistors and Clifford Algebras’, Lett. Math. Phys. 9 (1985), 149–155.

    Google Scholar 

  82. Hasiewicz Z., Kwasniewski A. K., and Morawiec P.: ‘Supersymmetry and Clifford Algebras’, J. Math. Phys. 25 (1984), 20131–2036.

    Google Scholar 

  83. Ktorides C. N.: ‘A Clifford Algebraic Approach to Superfields and Some Consequences’, J. Math. Phys. 16 (1975), 2123–2129.

    Google Scholar 

  84. Daniel M. and Ktorides C. N.: ‘Spinorial Charges and their Role in the Fusion of Internal and Space-Time Symmetries’, Nuclear Phys. B 115 (1976), 313–332.

    Google Scholar 

  85. Winnberg J. O.: ‘Superfields as an Extension of the Orthogonal Group’, J. Math. Phys. 18 (1977), 625–628.

    Google Scholar 

  86. Bugajska K.: ‘On Geometrical Properties of Spinor Structure’, J. Math. Phys. 21 (1980), 2097–2101.

    Google Scholar 

  87. Kim S. K.: ‘The Theory of Spinors via Involutions and its Application to the Representations of the Lorentz Group’, J. Math. Phys. 21 (1980), 1299–1311.

    Google Scholar 

  88. Kerner R.: ‘Covariant Objects and Invariant Equations on Fiber Bundles’, J. Math. Phys. 21 (1980), 2553–2559.

    Google Scholar 

  89. Sudbery A.: ‘Quaternionic Analysis’, Math. Proc. Cambridge Phil. Soc. 85 (1979), 199–225.

    Google Scholar 

  90. Sudbery A.: ‘Division Algebras, Pseudo-Orthogonal Groups and Spinors’, J. Phys. A: Math. Gen. 17 (1984), 939–955.

    Google Scholar 

  91. Hirzebruch F.: Topological Methods in Algebraic Geometry, Springer, Berlin, 1965.

    Google Scholar 

  92. Atiyah M. F.: ‘Algebraic Topology and Elliptic Operators’, Comm. Pure Appl. Math. 20 (1967), 237–249.

    Google Scholar 

  93. Atiyah M. F.: ‘Bott Periodicity and the Index of Elliptic Operators’, Quart. J. Math. Oxford 19 (1968), 113–140.

    Google Scholar 

  94. Atiyah, M. F.: ‘Vector Fields on Manifolds’, Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen (1969).

  95. Atiyah M. F. and Singer I. M.: ‘The Index of Elliptic Operators I’, Ann. Math. 87 (1968), 484–530.

    Google Scholar 

  96. Atiyah M. F. and Singer I. M.: ‘The Index of Elliptic Operators III’, Ann. Math. 87 (1968), 546–604.

    Google Scholar 

  97. Atiyah M. F. and Singer I. M.: ‘The Index of Elliptic Operators IV’, Ann. Math. 92 (1970), 119–138.

    Google Scholar 

  98. Atiyah M. F. and Singer I. M.: ‘The Index of Elliptic Operators V’, Ann. Math. 92 (1970), 139–149.

    Google Scholar 

  99. Atiyah M. F., Bott R. and Patodi V. K.: ‘On the Heat Equation and the Index Theorem’, Invent. Math. 19 (1973), 279–330.

    Google Scholar 

  100. Gilkey P. B.: ‘Curvature and the Eigenvalues of the Laplacian for Elliptic Complexes’, Adv. Math. 10 (1973), 344–382.

    Google Scholar 

  101. Singer, I. M.: ‘Eigenvalues of the Laplacian and Invariants of Manifolds’, Proc. Int. Congress Math., Vancouver, 1974, pp. 187–200.

  102. Kulkarni, R. S.: Index Theorems of Atiyah-Bott-Patodi and Curvature Invariants, Presses de L'Université de Montreal, 1975 (Séminaire No. 49).

  103. Hodgkin L. H. and Snaith V. P.: Topics in K-Theory, Lecture Notes in Math. No. 496, Springer, Berlin, 1975.

    Google Scholar 

  104. Stein M. R. (ed.): Algebraic K-Theory, Lecture Notes in Math. No. 551, Springer, Berlin, 1976.

    Google Scholar 

  105. Morrel B. B. and Singer I. M. (eds.): K-Theory and Operator Algebras, Lecture Notes in Math. No. 575, Springer, Berlin, 1977.

    Google Scholar 

  106. Bak A. (ed.): Algebraic K-Theory, Number Theory, Geometry and Analysis, Lecture Notes in Math. No. 1046, Springer, Berlin, 1984.

    Google Scholar 

  107. Shale D. and Stinespring W. F.: ‘States of the Clifford Algebra’, Ann. Math. 80 (1964), 365–381.

    Google Scholar 

  108. Bass H.: ‘Clifford Algebras and Spinor Norms over a Commutative Ring’, Amer. J. Math. 96 (1967), 156–206.

    Google Scholar 

  109. Bass H.: Algebraic K-Theory, Benjamin, New York, 1968.

    Google Scholar 

  110. Reed M. C.: ‘Torus Invariance for the Clifford Algebra I’, Trans. Amer. Math. Soc. 154 (1971), 177–183.

    Google Scholar 

  111. Reed M. C.: ‘Torus Invariance for the Clifford Algebra II’, J. Funct. Anal. 8 (1971), 450–468.

    Google Scholar 

  112. Herman R. and Reed M. C.: ‘Covariant Representation of Infinite Tensor Product Algebras’, Pacific J. Math. 40 (1972), 311–326.

    Google Scholar 

  113. Frenkel I. B.: ‘Spinor Representations of Affine Lie Algebras’, Proc. Natl. Acad. Sci. (USA) 77 (1980), 6303–6306.

    Google Scholar 

  114. Frenkel I. B.: ‘Two Constructions of Affine Lie Algebra Representations and Boson-Fermion Correspondence in Quantum Field Theory’, J. Funct. Anal. 44 (1981), 259–327.

    Google Scholar 

  115. Hudson R. L.: ‘Translation-Invariant Integrals, and Fourier Analysis on Clifford and Grassmann Algebras’, J. Funct. Anal. 37 (1980), 68–87.

    Google Scholar 

  116. Carey A. L., Hurst C. A. and O'Brien D. M.: ‘Automorphisms of the Canonical Anticommutation Relations and Index Theory’, J. Funct. Anal. 48 (1982), 360–393.

    Google Scholar 

  117. Carey A. L. and O'Brien D. M.: ‘Absence of Vacuum Polarization in Fock Space’, Lett. Math. Phys. 6 (1982), 335–340.

    Google Scholar 

  118. Carey A. L. and O'Brien D. M.: ‘Automorphisms of the Infinite Dimensional Clifford Algebra and the Atiyah-Singer mod 2 Index’, Toplogy 22 (1983), 437–448.

    Google Scholar 

  119. Carey A. L., Hurst C. A., and O'Brien D. M.: ‘Fermion Currents in 1+1 Dimensions’, J. Math. Phys. 24 (1983), 2212–2221.

    Google Scholar 

  120. Carey A. L.: ‘Infinite Dimensional Groups and Quantum Field Theory’, Acta Appl. Math. 1 (1983), 321–331.

    Google Scholar 

  121. Flanders H.: Differential Forms, Academic Press, New York, 1963.

    Google Scholar 

  122. Cartan H.: Differential Forms, Hermann, Paris, 1970.

    Google Scholar 

  123. VonWestenholz C.: Differential Forms in Mathematical Physics, North-Holland, Amsterdam, 1978.

    Google Scholar 

  124. Salingaros N.: ‘Relativistic Motion of a Charged Particle, the Lorentz Group, and the Thomas Precession’, J. Math. Phys. 25 (1984), 706–716.

    Google Scholar 

  125. Salingaros N. and Ilamed Y.: ‘Algebraic Field Descriptions in Three-Dimensional Euclidean Space’, Found. Phys. 14 (1984), 777–797.

    Google Scholar 

  126. Cercignani C.: ‘Linear Representation of Spinors by Tensors’, J. Math. Phys. 8 (1967), 417–422.

    Google Scholar 

  127. Salingaros N.: ‘Physical Algebras in Four Dimensions II: The Majorana Algebra’, Adv. Appl. Math. 4 (1983), 31–38.

    Google Scholar 

  128. Salingaros N.: ‘Invariants of the Electromagnetic Field and Electromagnetic Waves’, Amer. J. Phys. 53 (1985), 361–363.

    Google Scholar 

  129. Caianiello E. R. and Fubini S.: ‘On the Algorithm of Dirac Spurs’, Nuovo Cim. 9 (1952), 1218–1226.

    Google Scholar 

  130. Bjorken J. D. and Drell S. D.: Relativistic Quantum Mechanics, McGraw-Hill, New York, 1964.

    Google Scholar 

  131. Itzykson C. and Zuber J. B.: Quantum Field Theory, McGraw-Hill, New York, 1980.

    Google Scholar 

  132. Chisholm J. S. R.: ‘Relativistic Scalar Product of Gamma Matrices’, Nuovo Cim. 30 (1963), 426–428.

    Google Scholar 

  133. Kahane J.: ‘Algorithm for Reducing Contracted Products of Gamma Matrices’, J. Math. Phys. 9 (1968), 1732–1738.

    Google Scholar 

  134. Kennedy A. D.: ‘Clifford Algebras in 2ω Dimensions’, J. Math. Phys. 22 (1981), 1330–1337.

    Google Scholar 

  135. Takahashi Y.: ‘Reconstruction of a Spinor via Fierz Identities’, Phys. Rev. D 26 (1982), 2169–2171.

    Google Scholar 

  136. Takahashi Y.: ‘The Fierz Identities — a Passage Between Spinors and Tensors’, J. Math. Phys. 24 (1983), 1783–1790.

    Google Scholar 

  137. Artin E., Nesbitt C. J. and Thrall R M.: Rings with Minimum Condition, Univ. Michigan Press, Ann Arbor, 1944.

    Google Scholar 

  138. Herstein, I. N.: Noncommutative Rings, Math. Assoc. Amer., 1968 (Carus Mathematical Monographs No. 15).

  139. Jacobson N.: Structure of Rings, Amer. Math. Soc. Providence, R.I., 1956 (Colloquium Publications, Vol. 37).

    Google Scholar 

  140. Van derWaerden B. L.: Algebra, Vol. 2, Ungar, New York, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salingaros, N.A., Wene, G.P. The Clifford algebra of differential forms. Acta Appl Math 4, 271–292 (1985). https://doi.org/10.1007/BF00052466

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052466

AMS (MOS) subject classifications (1980)

Key words

Navigation