Skip to main content
Log in

Optimal kernel estimation of densities

  • Density Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Precise asymptotic behavior for mean integrated squared error (MISE) is determined for sequences of kernel estimators of a density in a broad class, including discontinuous and possibly unbounded densities. The paper shows that the sequence using the kernel optimal at each fixed sample size is asymptotically more efficient than a sequence generated by changing the bandwidth of a fixed kernel shape, regardless of the kernel shape. The class of densities considered are those whose characteristic functions behave at large arguments like the product of a Fourier series and a regularly varying function. This condition may be related to the smoothness of an m-th derivative of the density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bretagnolle, J. and Huber, C. (1979). Estimation des densités: risque minimax, Z. Wahrsch. Verw. Gebiete, 47, 119–137.

    Google Scholar 

  • Cline, D. B. H. (1988a). Admissible kernel estimators of a multivariate density, Ann. Statist., 16, 1421–1427.

    Google Scholar 

  • Cline, D. B. H. (1988b). Abelian and Tauberian theorems relating the local behavior of an integrable function to the tail behavior of its Fourier transform, J. Math. Anal. Appl., (to appear).

  • Cline, D. B. H. (1989). Consistency for least squares regression estimators with infinite variance data, J. Statist. Plann. Inference, 23, 163–179.

    Google Scholar 

  • Cline, D. B. H. and Hart, J. D. (1987). Kernel estimation of densities with discontinuities or discontinuous derivatives, Tech. Report, 87–9, Statistics Dept., Texas A&M Univ., Texas.

    Google Scholar 

  • Davis, K. B. (1977). Mean integrated square error properties of density estimates, Ann. Statist., 5, 530–535.

    Google Scholar 

  • Efroimovich, S. Y. (1985). Nonparametric estimation of a density of unknown smoothness, Theory Probab. Appl., 30, 557–568.

    Google Scholar 

  • Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density, Theory Probab. Appl., 14, 153–158.

    Google Scholar 

  • Gasser, T., Müller, H.-G. and Mammitzsch, V. (1985). Kernels for nonparametric curve estimation, J. Roy. Statist. Soc. Ser. B, 47, 238–252.

    Google Scholar 

  • Hall, P. and Marron, J. S. (1988). Choice of kernel order in density estimation, Ann. Statist., 16, 161–173.

    Google Scholar 

  • Hart, J. D. (1988). An ARMA type probability density estimator, Ann. Statist., 16, 842–855.

    Google Scholar 

  • Ibragimov, I. A. and Khasminskii, R. Z. (1983). Estimation of a distribution density, J. Sov. Math., 21, 40–57.

    Google Scholar 

  • Lukacs, E. (1983). Developments in Characteristic Function Theory, Oxford Univ. Press, New York.

    Google Scholar 

  • Marron, J. S. and Härdle, W. (1986). Random approximations to some measures of accuracy in nonparametric curve estimation, J. Multivariate Anal., 20, 91–113.

    Google Scholar 

  • Müller, H.-G. and Gasser, Th. (1979). Optimal convergence properties of kernel estimates of derivatives of a destiny function, Smoothing Techniques for Curve Estimation, (eds. Th. Gasser and M. Rosenblatt), 144–154, Springer, Berlin (Lecture Notes in Mathematics, No. 757).

    Google Scholar 

  • Müller, H.-G.. (1984). Smooth optimum kernel estimators of densities, regression curves and modes, Ann. Statist., 12, 776–774.

    Google Scholar 

  • Parzen, E. (1958). On asymptotically efficient consistent estimates of the spectral density of a stationary time series, J. Roy. Statist. Soc. Ser. B, 20, 303–322.

    Google Scholar 

  • Parzen, E. (1962). On estimation of a probability density function and mode, Ann. Math. Statist., 33, 1065–1076.

    Google Scholar 

  • Sacks, J. and Ylvisacker, D. (1981). Asymptotically optimum kernels for density estimation at a point, Ann. Statist., 9, 334–346.

    Google Scholar 

  • Seneta, E. (1976). Regularly varying functions, Lecture Notes in Mathematics 508, Springer, New York-Berlin.

    Google Scholar 

  • Stone, C. (1983). Optimal uniform rate of convergence for nonparametric estimators of a density function or its derivatives, Recent Advances in Statistics: Papers in Honor of Herman Chernoff on His Sixtieth Birthday, (eds. M. H. Rizvi, J. S. Rustagi and D. Siegmund), Academic Press, New York.

    Google Scholar 

  • Stone, C. (1984). An asymptotically optimal window selection rule for kernel density estimates, Ann. Statist., 12, 1285–1297.

    Google Scholar 

  • Thaler, H. (1974). Non-parametric probability density estimation and the empirical characteristic function, Tech. Report, 14, Statist. Sci. Div., State Univ. of New York at Buffalo, New York.

    Google Scholar 

  • Titchmarsh, E. C. (1948). Introduction to the Theory of Fourier Integrals, 2nd ed., Oxford Univ. Press, New York.

    Google Scholar 

  • van Eeden, C. (1985). Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous, Ann. Inst. Statist. Math., 37, 461–472.

    Google Scholar 

  • Wahba, G. (1975). Interpolating spline methods for density estimates I: Equi-spaced knots, Ann. Statist., 3, 15–29.

    Google Scholar 

  • Wahba, G. (1981). Data-based optimal smoothing of orthogonal series density estimates, Ann. Statist., 9, 146–156.

    Google Scholar 

  • Watson, G. S. and Leadbetter, M. R. (1963). On the estimation of the probability density, I, Ann. Math. Statist., 34, 480–491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by National Science Foundation Grant DMS-8711924.

About this article

Cite this article

Cline, D.B.H. Optimal kernel estimation of densities. Ann Inst Stat Math 42, 287–303 (1990). https://doi.org/10.1007/BF00050838

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050838

Key words and phrases

Navigation